• Title/Summary/Keyword: 광섬유 변위 센서

Search Result 53, Processing Time 0.027 seconds

A Probe of Fiber Optic OTDR Displacement Sensor (광섬유 OTDR변위 센서의 탐촉자)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Seo, Dae-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.350-355
    • /
    • 2005
  • The probes of fiber optic OTDR (Optical Time Domain Reflectometry) sensor was developed to measure displacements of social infrastructures. This probe was simply constructed with two conventional optical fiber connectors, and a fiber bending part, which transforms displacement to optical loss. When the displacement was affected on the bending loss part, the reflected light intensity of one optical connector was changed. The displacement was determined from this reflected light intensity change of the connector. fiber optic OTDR displacement sensor was developed as the multiplexed type of one fiber line with 5 sensor probes. Multiplexing operation was tested by these 5 sensor probes.

Development of a Convergence Monitoring Method for Cylindrical Structures by Optical Fiber Bragg Grating Sensor (광섬유 FBG센서를 이용한 원주형 구조물의 2차원 상대변위 모니터링기법 개발)

  • Lho, Byeong-Cheol;Kim , Jong-Woo;Kang , Suck-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.160-166
    • /
    • 2006
  • Optical Fiber Bragg Grating sensor has a good performance to measure microscopic displacement which can measure strain of lining concrete and cylindrical structure like high intensity containment building and it can present many advantages like a corrosion resistance from the durability point of view. Then it can measure plane geometrical displacement of cylindrical structures with two-way displacement FBG sensor module. According to the test result, measurement of FBG sensor is better performance than other electric sensor system and 2D-level measurement. As a test result, Resolution of the two-way displacement sensor module with FBG sensors are more 10 times than other LVDT or 2D surveying.

Design Model of Intensity Modulation Type Displacement sensor Using Step-index Multimode Optical Fiber (스텝 인덱스 멀티모드 광섬유를 이용한 광강도 변조방식 변위센서 설계모델 연구)

  • Shin, Woo-Cheol;Hong, Jun-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.500-506
    • /
    • 2006
  • An optical fiber displacement sensor has the advantages of relatively simplicity, cheap, small probe size and immunity against environmental perturbation. The working principle of the sensor is based on the intensity modulation that is detection light intensity reflecting from the surface being measured. This paper presents the mathematical model of displacement measurement mechanism of this sensor type. The theoretical and experimental data are compared to verify the model in describing the realistic approach to sensor design. Finally, the analysis results show that displacement response characteristics such as sensitivity, measuring range are easily modified by principal design parameters such as magnitude of optical Power, diameter of optical fiber core and distance between transmitting fiber and receiving fiber.

Fiber Optic Displacement Sensor System for Structural Health Monitoring (구조 건전성 모니터링을 위한 광섬유 변위 센서 시스템 개발)

  • Lee, Kun-Ho;Ahn, Byung-Jun;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.374-381
    • /
    • 2011
  • It has been doing to research on novel techniques for structural health monitoring by applying various sensor techniques to measure the deflection in mechanical and civil structures. Several electric-based displacement sensors have many difficulties for using them because of EMI (Electro-Magnetic Interference) noise of many lead-wires when they are installed to many points in the structures. In this paper, it is proposed an affordable intensity-based fiber optic sensor to measure small displacement solving the problems of conventional sensors. In detail, the sensor head was designed on the basis of the principle of bending loss and a basic experiment was performed to obtain the sensitivity, the linearity and the stroke of the sensor. Moreover, a prototype was designed and manufactured to be easily installed to a structure and a real-time control software was also successfully developed to drive the fiber optic sensor system.

A Study on the Measurement and Application of Long Gauge fiber Brags Grating Sensors (긴 게이지 길이 광섬유 격자 센서의 측정과 응용)

  • Kim, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.343-349
    • /
    • 2005
  • In this research, the fiber Bragg grating sensors with long gauge for displacement measurement in the long distance is developed and tested. The sensors show an accuracy and a capability for displacement measurement oin long distance. Monitoring using static logger of system of FBG sensor with strained optical fiber shows the capability of measurement in the harsh environment such as strong wind. Measurement of long distance displacement by optical fiber sensor if use $250{\mu}m$ optical fiber and impose some strong pre-tension shows possibility in monitoring of nuclear containment structure.

Performance Test of Optical Fiber Sensors Using Embankment Pool Model (토조모형을 이용한 광섬유 센서 성능 시험)

  • Park, Kyoung-Won;Hwang, Eui-Ho;Lee, Gwang-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.649-653
    • /
    • 2012
  • 제방붕괴에 따른 피해발생을 억제하기 위해서는 제방거동 특성을 사전에 충분한 정보를 통하여 파악할 필요가 있으며, 이를 위해 광섬유를 이용한 제방누수감지 센서를 개발하였다. 광섬유는 내구성 및 유지관리가 우수하고 장기간 사용에도 장점을 가지고 있다. 개발된 센서들은 현장에 적용하기 전에 충분한 실험을 통해 성능과 기능에 대한 검토가 필요하다. 본 연구에서는 개발된 광섬유 센서를 대상으로 제방누수감지 목적으로 설치할 경우 센서의 이행도를 시험하였다. 시험방법은 토조를 설치하여 제체에 작용하는 간극수압, 온도 및 변위 등을 대상으로 하였다. 이를 위해 폭 5m, 길이 7m 및 높이 2m의 토조를 설치하여 가제방의 주요 부위에 기존 계측기기와 광섬유 센서를 같이 매설하고 수위와 시간변화에 따른 주요 특성치에 대하여 실험하였다. 실험결과 광섬유 센서가 연구목적에 부합하는 계측치를 보여주어 제방누수감지 센서로 활용 가능함을 확인하였다. 아울러 광섬유 센서의 기능에 대한 전반적인 실험을 통하여 현장적용에 대한 사용성을 입증하였다.

  • PDF

Multiplexed Bend Loss Type Single-Mode Fiber-Optic Displacement Sensor Using Reflection Signals Generated at Optical Connectors (광커넥터의 반사를 이용한 다중화된 굽힘 손실형 단일모드 광섬유 변위센서)

  • Yoo Jung-Ae;Jo Jae Heung;Kwon Il-Bum
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.5
    • /
    • pp.415-422
    • /
    • 2004
  • We propose and present a new multiplexed bend loss type single-mode fiber-optic sensor system for displacement measurement in order to measure the displacement of several mm of civil engineering structures such as bridges and buildings. We make a bend loss type fiber-optic sensor for measuring displacements using the signal difference between two reflection signals due to various bend losses generating at a pair of optical connectors by using the optical time domain reflectometer. And we fabricate a multiplexed bend loss type fiber-optic sensor detecting linear displacements of 4 measuring positions of an object by setting these new 4 fiber-optic sensors on a single mode fiber simultaneously. We find that the multiplexed fiber-optics displacement sensor has linearity of 0.9942, maximum displacement of 6 mm, and accuracy of 6% for 4 measuring points.

Application and Development Trend of OTDRs (분포형 광섬유센서의 응용 및 개발 동향)

  • Chae, Kwagn-Seok;Lee, Sang-Pil;Lee, Chang-Ho;Han, Sung-Jae
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • In these days, the development of optical fiber sensor technology is so remarkable that it can measure various physical and chemical quantities ranging from a few millimeters to over several kilometers. In addition, it is attempted to assess the structural integrity of the state of the advanced technologies and existing structures such as ships, aircrafts, and bridges. This paper introduced the case histories of the measuring technology of optical fiber applied on structures such as roads and tunnels. The case history using OTDR (Optical Time Domain Reflectometery) was also introduced in this paper. Measurement of the pre-convergence of a tunnel is essential to assess the safety of a tunnel and understand the geological conditions ahead of an advancing tunnel. Therefore, the pre-convergence measuring technology using OTDR is expected to substitute conventional measuring techniques.

Fiber Optic Sensors for Smart Monitoring (스마트 모니터링용 광섬유센서)

  • Kim, Ki-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.137-145
    • /
    • 2006
  • Recently, the interests in structural monitoring of civil infrastructures are increased. Especially, as the civil infrastructures such as bridges, tunnels and buildings become large-scale, it is necessary to monitor and maintain the safety state of the structures, which requires smart systems that can supply long-term monitoring during the service time of the structures. In this paper, we investigated the possibilities of fiber optic sensor application to the various structures. We investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show good response to the structural behavior of the joint while electric gauges lack of sensitivity, durability and long term stability for continuous monitoring. We also apply fiber optic structural monitoring to the composite repaired concrete beam structure. Peel-out effects is detected with optical fiber Bragg grating sensors and the strain difference between main structure and repaired carbon sheets is observed when they separate each other. The real field test was performed to verify the behaviors of fiber Bragg grating sensors attached to the containment structure in Uljin nuclear power plant in Korea as a part of structural integrity test which demonstrates that the structural response of the non-prototype primary containment structures. The optical fiber Bragg grating sensor smart system which is the probable means for long term assessments can be applicable to monitoring of structural members in various civil infrastructures.

Displacement sensor for Measuring magnetostriction of Amorphous Ribbon (비정질 리본의 자기변형 측정용 광섬유 변위센서)

  • 유권상;김철기;김중복;김현아
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.1
    • /
    • pp.36-39
    • /
    • 1996
  • We have constructed a disp1acerrent sensor for measuring dynamic magnetostriction of an arrvrphous ribbon under alternating magnetic field using fiber optic Fabry-Perot interferorreter. The signal of the sensor was depen¬dent on the index matching oil and the optical isolator. The resolution of the sensor was $30{\AA}$ and the measured peak to peak magnetostriction of the amorphous ribbon $Fe_{81}B_{13.5}Si_{3.5}C_{2}$ was $28{\times}10^{-6}$.

  • PDF