• Title/Summary/Keyword: 광섬유격자

Search Result 397, Processing Time 0.025 seconds

Fiber Bragg grating sensor using polarization-maintaining fiber (편광 유지 광섬유를 이용한 Bragg Grating 센서 제작)

  • 김철진;박태상;이상배;최상삼;정해양
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.415-419
    • /
    • 1997
  • A novel fiber optic sensor is demonstrated using a FBG in PM(Polarization-Maintaining) fiber. Gratings have been written in a Bow-Tie type fiber using the phase mask. The operation of the sensor simply involves monitoring back-reflected Bragg wavelengths from the grating. Since PM fiber has two principal semi-axes with two indices of refraction, two Bragg wavelengths were observed. We have observed the position of Bragg wavelengths for PM FBG shifted simultaneously by either applying the longitudinal strain or temperature change. The wavelength sensitivity of 1.2pm/$\mu$$\varepsilon$ about a longitudinal strain and the wavelength sensitivity of 11.4pm/$^{\circ}C$ about a temperature have been experimentally achieved. The wavelength sensitivity of both longitudinal strain and temperature are approximately same with the reported values for the single mode FBG. On the other hand, the change of separation between Bragg wavelengths was observed by the applying transverse stress. We observed that the separation between two Bragg wavelengths is proportional to the applied transverse stress. The wavelength sensitivity of 14.6 pm/N about a transverse stress has been achieved. We have demonstrated PM FBG sensors can measure the transverse stress independently from the effects of temperature.

  • PDF

Resonant Wavelength Characteristics of Arc-Induced Long-Period Fiber Gratings (아크 유도 장주기 광섬유 격자의 공진 파장 특성)

  • Chung, Chul;Lee, Ho-Joon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.10
    • /
    • pp.48-56
    • /
    • 2002
  • A fabrication method of long--period fiber gratings (LPFGs) that can be easily controlled resonance wavelength and losses is introduced. We used the superposition method that core and cladding diameter are modulated by applying a number of small electric-arc to the normal fiber. We derived an equation of resonance wavelength change according to core diameter variation using the phase matching condition and showed the results are well matched with experiments. The measured resonant wavelengths of arc-induced superposition LPFGs according to grating period are well coincident with that of phase matching condition. The resonance wavelength is measured for the temperature changes and a slight mechanical strength degradation of arc-induced LPFGs is observed by increasing arc times.

Bending Characteristics Change of Long-Period fiber Grating due to Co-doping of Boron for Optical fiber Sensors (광섬유 센서 구성을 위한 보론 첨가에 따른 장주기 광섬유 격자의 구부림 특성 변화)

  • Moon, Dae-Seung;Chung, Young-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.339-342
    • /
    • 2005
  • In long-period fiber grating (LPFG) to be made up optical fiber sensors, resonance coupling occurs between the forward-propagating core mode and cladding modes at the wavelength that satisfy the Phase matching condition. The resonance wavelength and the coupling strength depends strongly on the external environment like temperature, strain, and ambient index. These characteristics can be utilized for various applications as optical fiber sensors. fabrication of optical fiber gratings is typically based on the photosensitivity effect, i.e. the permanent change of the refractive index upon irradiation of the UV beam, and therefore, fabrication of the optical fiber with high phososensitivity is an important part of the research on optical fiber gratings. In this work, we measured the effort of to-doping of boron on the index difference between the core and cladding of the optical fiber and the sensitivity of the LPFC to the temperature and bending changes. We observed that the index difference between the core and the cladding decreased by $(1.69{\times}10^{-4}/SCCM)$ and the temperature sensitivity of the resonance wavelength shirt decreased by $(0.01145nm/^{\circ}C/SCCM)$. The dependence or the bending-induced changes or the transmission characteristics of LPFG on the tore-cladding index difference was investigated experimentally. The measurement results indicate that the bending sensitivity increases as the index difference decreases.

All-optical gain control in erbium-doped fiber amplifier using a fiber grating (광섬유격자를 이용한 Erbium 첨가 광섬유 증폭기의 광학적 이득제어)

  • 박희갑
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.58-62
    • /
    • 1997
  • A new, simple lasing loop configuration employing a fiber grating was proposed and demonstrated for all-optical gain control of erbium-doped fiber amplifier. The lasing loop was designed such that the fiber grating acts as a notch filter to cutoff the lasing light as well as selects the lasing wavelength. The operating gain was clamped to the same level as the loop loss and it could be varied with a tunable directional coupler in the loop. It is believed that this type of gain-controlled erbiumdoped fiber amplifier can have several advantages when used in wavelength-division-multiplexed transmission systems.

  • PDF

A Study on the Characteristics of All-Optic Tunable Filter in various temperature and strain Using Fiber Bragg Grating (FBG를 이용한 온도 및 스트레인의 영향에 따른 전광필터 특성에 관한 연구)

  • Jang Woo-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.11
    • /
    • pp.17-22
    • /
    • 2005
  • In this study, we suggested wave-variable Bragg lattice using the characteristic of the Bragg wave that varies according to the change of the temperature imposed on the optical fiber lattice device, and experimented using a simulation test. We analyzed the results of the FBG change according to the change of the temperature obtained in the variable FEG computer simulation and experiment to suggest optimal data. Therefore, utilizing wave-variable optical filter through FBG allows us to combine other channels beyond optical fiber lattice device wave, and can be used as a helpful device in the Dense Wavelength Division Multiplexed system with a channel intervention of 0.08nm(10GHz).

Wavelength Switching of Erbium-Doped Fiber Laser using Long-Period Fiber Grating Written on a Polarization-Maintaining Fiber (편광 유지 광섬유에 새겨진 장주기 격자를 이용한 어븀 첨가 광섬유 레이저의 파장 스위칭)

  • Lee, Yong-Wook;Lee, Byoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.48-50
    • /
    • 2002
  • 편광 유지 광섬유에 새겨진 장주기 격자의 파장에 따른 편광 의존 손실을 이용하여, 광섬유 브래그 격자가 사용된 광섬유 레이저에서 공동 내부 빛의 편광을 회전시킴에 따라, 발진 파장의 스위칭 및 이중 파장 발진이 가능함을 보였다.

  • PDF

Optical Acetylene Gas Detection using a Photonic Bandgap Fiber and Fiber Bragg Grating (광섬유 격자와 포토닉 밴드갭 광섬유를 이용한 아세틸렌가스 검출)

  • Lee, Yun-Kyu;Lee, Kyung-Shik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.23-29
    • /
    • 2010
  • We propose an optical gas sensor, which consists of a hollow core photonic bandgap fiber (HC-PBGF) and fiber Bragg grating (FBG), for the detection of acetylene gas. The gas detection scheme is uniquely characterized by modulating the Bragg wavelength of the fiber Bragg grating around a selected absorption line of gas filled in the photonic bandgap fiber. In the measurement, a 2m-long HC-PBGF and FBG with a Bragg wavelength of 1539.02nm were used. The FBG was modulated at 2Hz. We demonstrated that the optical fiber gas sensor was able to selectively measure the 2.5% and 5% of acetylene gases.

A Channel Spacing-Tunable Sampled Fiber Gratings (채널 간격을 가변할 수 있는 샘플격자)

  • 조준용;김성춘;이경식
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.21-26
    • /
    • 2003
  • In this paper, a channel spacing-tunable sampled fiber gratings(SFGs) is proposed, and analytically and experimentally investigated. The channel spacing of the proposed SFGs can be tuned by simply changing the period of the external pressure on the fiber Bragg gratings(FBGs). The channel spacing of 1.4nm was tuned to 0.8nm by changing the pressure period from 580${\mu}{\textrm}{m}$ to 1000${\mu}{\textrm}{m}$ The experimental results agree well with the theoretical results.

The spectral characteristics of tilted long-period gratings (기울어진 장주기 격자의 스펙트럼 특성)

  • 김명진;엄태중;김진채;백운출;이병하
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.54-55
    • /
    • 2002
  • 장주기 광섬유격자는 센서 시스템의 센싱 부분과 광통신 시스템에서의 여러 가지 필터 등 다양한 응용분야에서 연구되어져 왔다. 이러한 장주기 격자는 광섬유의 코어에 균일한 굴절률 변화를 인가했을때 다음과 같은 위상정합조건(phase matching condition)을 만족하는 투과 스펙트럼을 보인다. (중략)

  • PDF

Current Sensor for Bus Bar based on Fiber Bragg Gratings (광섬유 브래그 격자를 이용한 부스바용 전류 센서)

  • Kwang Taek Kim;Gunpyo Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.72-75
    • /
    • 2023
  • In this paper, a fiber-optic current sensor for a bus bar conductor based on the fiber Bragg grating (FBG) is proposed and demonstrated experimentally. The metal bus bar and a magnet are connected to each other through an FBG and the Bragg wavelength of the FBG is changed by magnetic force between the two connected devices. The experimental results showed that the Bragg wavelength of an FBG shifted by 650 pm as the 500 A direct current was applied to the bus bar.