• 제목/요약/키워드: 광생물반응기 케이스

검색결과 5건 처리시간 0.02초

얇은 평판형 광생물 반응기 케이스 개발에 관한 연구 (A Study on the Development of a Thin Flat Panel Photo-bioreactor Case)

  • 안동규;안영수;정상화
    • 한국정밀공학회지
    • /
    • 제29권9호
    • /
    • pp.946-957
    • /
    • 2012
  • The objective of this paper is to investigate into the development of a thin flat panel photo-bioreactor case with characteristics shapes. The thin flat panel photo-bioreactor case was designed to be manufactured from a plastic thermoforming process. A proper design with a relatively high rigidity was obtained through the structural analyses for different designs of the photo-bioreactor case. The thermoforming analyses were performed. From the results of the thermoforming analyses, a proper forming condition and the formability of the designed plastic photo-bioreactor case were estimated. The thermoforming moulds for the flat panel photobioreactor cases were manufactured. The thermoforming experiments were performed to examine the manufacturability of the designed flat panel photo-bioreactor cases. From the results of the thermoforming experiments, it was shown that thin flat panel photo-bioreactor cases with characteristic shapes can be manufactured from the designed thermoforming mould and process.

평판형 광생물반응기 케이스 접합 기술 (Joining Technology of Flat Panel Photobioreactor Case)

  • 안동규;이호진;안영수
    • 한국정밀공학회지
    • /
    • 제30권2호
    • /
    • pp.154-163
    • /
    • 2013
  • Adhesive bonding and plastic welding have been widely used to join two plastic materials together. The goal of this paper is to determine a proper joining technology of a pair of flat panel (FP) photobioreactor (PBR) case. The material of the FP PBR case is polycarbonate (PC) plate. Two types of adhesion, including acryl adhesive and two-part epoxy adhesive, as well as two types of plastic welding technology, including ultrasonic welding and thermal welding, are employed for joining of PC plates. In order to influence of the adhesion and welding conditions on the joining characteristics of the PC plates in operational conditions of the FP PBR case, the morphology in the vicinity of the joined region as well as the water and pressure resistance characteristic are investigated. In addition, the variation of the bonding strength of the joined region and deformation behaviors in the vicinity of the joined region according to the adhesion and welding conditions is examined via the lap-shear test. From the results of basic experiments, proper joining technologies are chosen. Using the chosen joining technologies, the FP PBR case are fabricated to perform full-scale durability experiment. The results of the full-scale durability experiment have been shown that the chosen joining technologies can be applicable to fabricate the FP PBR case.