광생물 반응기의 접합/융착 방법에 따른 케이스 결합 특성변화 Variation of Joining Characteristics of Photobioreactor Case According to Adhesion and Welding Technologies

#*안동규¹, 이호진², 안영수² , 김용복³

**D. G. Ahn(smart@chosun.ac.kr)¹, H. J. Lee², Y.S.Ahn², Y.B.Kim³ ¹조선대학교 기계공학과, ²조선대학교 일반대학원, ³한독정공

Key words: Photobioreactor, Polycarbonate, Thermal welding, Adhesion, Joining characteristics

1. 서론

최근 화석 에너지 자원고갈 및 환경오염 문제가 심각해짐에 따라 화석 연료의 대안으로 친환경적 이고 지속가능한 에너지 자원의 개발에 대한 많은 연구가 폭넓게 진행되고 있다. 이와 함께, 생물자원 의 광합성을 통한 미세조류 활용방법에 대한 관심 이 높아지고 있으며, 미세조류의 효율적인 배양을 위한 광생물 반응기에 대한 연구도 진행되고 있다.

본 연구에서는 평판형 광생물 반응기 케이스의 접합특성 향상을 위하여 케이스 접합/융착 방법에 따른 케이스의 결합 특성변화에 대한 연구를 수행 하였다.

2. 실험방법

본 연구에서는 광생물 반응기제작에 사용되는 재료인 투명 PC (Polycarbonate) 를 사용하여 200 mm × 200 mm × 5 mm 의 평판 형태로 두개의 시편을 제작하였다. 이때 한 개의 시편은 압력을 가하기 위하여 시편 중앙에 9 mm 직경의 구멍을 뚫었으며 시편의 외측으로부터 50 mm 범위의 접합/융착 영역을 가지도록 하였다.

실험에 사용된 접합제는 이액형 접합제 (DP460), PC 접합제 (MC100) 및 마이티 퍼티 3 가지이다. 또한 실험에 적용된 융착 방법은 초음파 융착과 열융착 2 가지이다. 열융착의 경우 상면온도 155 ℃, 165 ℃ 및 175 ℃ 의 3 가지에 대하여실험을 수행 하였다. 내압실험을 위하여 광생물반응기에 실제 가해지는 평균압력을 1 Paee로 가정하였다. 내압실험에 적용된 평균압력의 범위는 1 Pave ~ 8 Pave 였다.²

이액형 접합제 시편은 접착영역에 접착액과 경

화제를 섞은 액을 고르게 도포 후 클램프를 사용하여 두 개의 시편을 고정시켰다. PC 접합제 시편의 경우 모세관 현상을 이용하여 접합액을 주입하여 클램프로 고정하였고, 마이티 퍼티 시편은 경화제와 반죽을 한 뒤, 한 개의 시편에 고르게 펴 다른 시편과 붙이고 경화시간 동안 시편 위에 50 kg의 하중을 가하였다. 이 후 3 종류의 접합시편 모두 24 시간 동안 경화 시켰다.

초음파 융착 시편은 초음파 융착기를 이용하여 220 V, 3 A, 200 W, 28 kHz 조건에서 10 초 동안 균일한 간격으로 융착 하였다. 열융착 시편은 핫 프레스를 통하여 5 분 동안 시편의 두께를 7.5 mm 까지 압축하여 융착 하였다. 단, 155 ℃ 열융착 시편은 9 mm 로 압축하여 융착 하였으며 두 시편의 융착 방법은 Fig. 1 과 같다.³

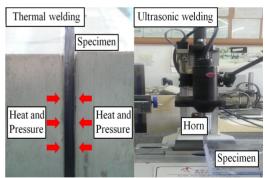
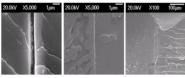


Fig. 1 Welding methodology


본 연구에서는 제작한 시편의 내구성 변화를 고찰하기 위하여 총 20 일간의 단계별 압력실험을 수행하였다. 또한 내구성이 우수한 실험군을 선발하여 25 일간 수중에서 8 Pace 로 유지시킨 후 내구특성을 분석하였다.

3. 결과 및 고찰

3.1 결합특성

Fig. 2 와 3 은 각 접합 및 융착 조건에 따른 결합부의 형상/조직 변화이다.

(a) Ultrasonic welding

$$\begin{split} T_{\rm W} = 155 \, ^{\rm o}C \quad T_{\rm W} = 165 \, ^{\rm o}C \quad T_{\rm W} = 175 \, ^{\rm o}C \\ \text{(b) Thermal welding} \end{split}$$

Fig. 2 Morphology in the vicinity of the welded region

(a) DP460 (b) MC100

(c) Might putty

Fig. 3 Morphology in the vicinity of the joined region

Fig. 2 에 나타난 융착 시편의 결합부 특성 분석 결과 초음과 융착은 불안정한 용융이 발생하여 국부적으로 비융착 영역이 발생하였다. 열융착 시편은 155 ℃ 조건에서 비융착 영역이 발생하였으며, 175 ℃ 조건에서 시편에 첨가된 재료의 기화에 의하여 시편에 기포가 발생하였다. 그러나 165 ℃ 조건은 융착부에 결함이 발생하지 않았다.

Fig. 3 에 나타난 접합시편의 결합부 특성을 분석한 결과, 이액형 접합제 시편과 마이티 퍼티 시편은 시편과 접합제가 화학반응 없이 일반적인 접합상태를 나타내었다. 그러나, PC 접합제 시편은 접합제 도포부에서 화학반응이 발생하여 시편 경계면 좌/우 판재의 접합경계가 없이 일체형으로 결합되었다.

3.2 내압 및 접합부 내수 특성

내수특성 및 내압실험 결과는 Table 1 과 같다. 접합 시편의 내압강도는 이액형 접합제, 마이티퍼티 및 PC 접합제 시편이 1 Pare 을 기준으로 각각 3 배, 5 배 및 28 배 정도의 높은 지지압력을 가지고 있어 제품 접합에 안정적인 강도를 유지 하는 것을 알 수 있었다. 내수 특성 측면에서는 마이티 퍼티시편만이 수중 노출 18 일 후 표면에서 접합제 분리현상이 발생하였다.

초음파 융착시편의 경우 0.01 MPa 정도 내압을 부가하였을 때 국부적인 시편분리가 발생하였다. 그러나, 열융착 시편의 경우 기준압력인 1 Pave 의 5 배 이상의 내압에서도 시편의 파손이 발생하지 않았다. 또한, 초음파 융착 시편과 열융착 시편 모두 내수특성은 양호하였다.

Table 1 Results of experiment

Table 1 Results of experiment				
Joining technology		Water resistance	Pressure (MPa)	Location of crack initition
DP460		Good	0.05	Joined region
MC100		Good	0.47	specimen
Mighty putty		Bad	0.09	Joined region
Ultrasonic Welding		Good	0.01	Joined region
Thermal Welding (°C)	155	Good	0.09	Joined region
	165	Good	0.36	Specimen
	175	Good	0.27	Specimen
				-

4. 결론

본 연구에서는 접합/융착 방법에 따른 케이스 결합특성 변화에 대한 연구를 수행하였다. 결합부형성/조직 분석을 통하여 결합/융착 방법에 따른 시편의 결합상태를 고찰하였다. 또한, 내압/내수실험을 통하여 접합/융착 방법에 따른 결합강도, 내수특성을 분석하였다. 이 결과로부터 미세조류배양용 광생물 반응기 케이스 접합에 적합한 접합/융착 방법을 선정할 수 있었다.

후기

본 연구는 2010 년도 지식경제부의 재원으로 한국에너지 기술평가원(KETEP)의 지원을 받아 수 행한 연구 과제입니다.(No. 20103020090020)

참고문헌

- D. G Ahn, C. G Cho, "Design of Photobioreactor for Mass Production of Microalgae" Journal of the KSPE, 28, 140-153, 2011.
- D. G Ahn, Y. S Ahn, "A Study on the Development of a Thin Flat Panel Photo-bioreactor Case" Journal of the KSPE, 29, 946-957, 2012.
- D. Stavrov, "Resistance welding of thermoplastic composites-an overview" Composites Part A: ASM, 36, 39-54, 2005.