• Title/Summary/Keyword: 광물입자

Search Result 386, Processing Time 0.025 seconds

Study on the Geochemical Weathering Process of Sandstones and Mudstones in Pohang Basin at CO2 Storage Condition (지중저장 조건에서 초임계CO2에 의한 포항분지 사암과 이암의 지화학적 풍화반응 연구)

  • Park, Jinyoung;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.221-234
    • /
    • 2013
  • Laboratory experiments for the reaction with supercritical $CO_2$ under the $CO_2$ sequestration condition were performed to investigate the mineralogical and geochemical weathering process of the sandstones and mudstones in the Pohang basin. To simulate the supercritical $CO_2$-rock-groundwater reaction, rock samples used in the experiment were pulverized and the high pressurized cell (200 ml of capacity) was filled with 100 ml of groundwater and 30 g of powdered rock samples. The void space of the high pressurized cell was saturated with the supercritical $CO_2$ and maintained at 100 bar and $50^{\circ}C$ for 60 days. The changes of mineralogical and geochemical properties of rocks were measured by using XRD (X-Ray Diffractometer) and BET (Brunauer-Emmett-Teller). Concentrations of dissolved cations in groundwater were also measured for 60 days of the supercritical $CO_2$-rock-groundwater reaction. Results of XRD analyses indicated that the proportion of plagioclase and K-feldspar in the sandstone decreased and the proportion of illite, pyrite and smectite increased during the reaction. In the case of mudstone, the proportion of illite and kaolinite and cabonate-fluorapatite increased during the reaction. Concentration of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased during the reaction, suggesting that calcite and feldspars of the sandstone and mudstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites in Pohang basin. The average specific surface area of sandstone and mudstone using BET analysis increased from $27.3m^2/g$ and $19.6m^2/g$ to $28.6m^2/g$ and $26.6m^2/g$, respectively, and the average size of micro scale void spaces for the sandstone and mudstone decreased over 60 days reaction, resulting in the increase of micro pore spaces of rocks by the dissolution. Results suggested that the injection of supercritical $CO_2$ in Pohang basin would affect the physical property change of rocks and also $CO_2$ storage capacity in Pohang basin.

Removal of Arsenite by Nanocrystalline Mackinawite(FeS)-Coated Alumina (나노크기 매킨나와이트로 코팅된 알루미나에 의한 아비산염의 제거)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.101-110
    • /
    • 2013
  • Due to the large specific surface area and great reactivity toward environmental contaminants, nanocrystalline mackinawite (FeS) has been widely applied for the remediation of contaminated groundwater and soil. Furthermore, nanocrystalline FeS is rather thermodynamically stable against anoxic corrosion, and its reactivity can be regenerated continuously by the activity of sulfate-reducing bacteria. However, nanocrystalline mackinawite is prone to either spread out along the groundwater flow or cause pore clogging in aquifers by particle aggregation. Accordingly, this mineral should be modified for the application of permeable reactive barriers (PRBs). In this study, coating methods were investigated by which mackinawite nanoparticles were deposited on the surface of alumina or activated alumina. The amount of FeS coating was found to significantly vary with pH, with the highest amount occurring at pH ~6.9 for both minerals. At this pH, the surfaces of mackinawite and alumina (or activated alumina) were oppositely charged, with the resultant electrostatic attraction making the coating highly effective. At this pH, the coating amounts by alumina and activated alumina were 0.038 and 0.114 $mmol{\cdot}FeS/g$, respectively. Under anoxic conditions, arsenite sorption experiments were conducted with uncoated alumina, uncoated activated alumina, and both minerals coated with FeS at the optimal pH for comparison of their reactivity. Uncoated activated alumina showed the higher arsenite removal compared to uncoated alumina. Notably, the arsenite sorption capacity of activated alumina was little changed by the coating with FeS. This might be attributed to the abundance of highly reactive hydroxyl functional groups (${\equiv}$AlOH) on the surface of activated alumina, making the arsenite sorption by the coated FeS unnoticeable. In contrast, the arsenite sorption capacity of alumina was found to increase substantially by the FeS coating. This was due to the consumption of the surface hydroxyl functional groups on the alumina surface and the subsequent occurrence of As(III) sorption by the coated FeS. Alumina, on the surface area basis, has about 8 times higher FeS coating amount and higher As(III) sorption capacity than silica. This study indicates that alumina is a better candidate than silica for the coating of nanocrystalline mackinawite.

Changes of Clay Mineral Assemblages in the Northern Part of the Aleutian Basin in the Bering Sea during the Last Glacial Period (마지막 빙하기 동안 베링해 알류샨 분지 북부 지역의 점토광물 조성 변화)

  • Kim, Sung-Han;Cho, Hyen-Goo;Khim, Boo-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.19-29
    • /
    • 2011
  • Clay mineral assemblages of core PC25A collected from the northern part of the Aleutian Basin in the Bering Sea were examined in order to investigate changes in sediment provenances and transport pathways. Ages of core PC25A were determined by both Last Appearance Datum of radiolaria (L. nipponica sakaii; $48.6{\pm}2\; ka$) and age control points obtained by the correlations of $a^{\ast},\; b^{\ast}$, and laminated sediment layers with the adjacent core PC23A, whose ages are well constrained. The corebottom age of core PC25A was calculated to be about 57,600 yr ago and core-top might be missing during coring execution. Average contents of smectite, illite, kaolinite, and chlorite during the last glacial period are 11% (5~24%), 47% (36~58%), 13% (9~19%), and 29% (21~40%), respectively. Clay mineral assemblages of the last glacial period are characterized by higher illite and lower smectite contents than those of core MC24 representing the modern values. Illite-rich clay sediments during the warm Early Holocene were transported from the northern part of Alaska continent (Province 1) through the ice-melt waters. During the deglacial period (B${\phi}$lling-All${\phi}$rod) of MIS 2, clay-sized particles seemed to be also transported by ice-melt waters mainly from Province 2 and Province 3 located farther south than Province 1. Higher smectite content during the Last Glacial Maximum is attributed to increased amounts of clay particles from the adjacent Alaska Peninsula (Province 4). From the early to the middle MIS 3, illite and smectite contents decreased, whereas chlorite content increased. With the low sea level standing during MIS 3 the supply of clay sediments from Province 2 and Province 3 was most likely intensified. Changes in clay mineral assemblages of core PC25A located in the northern part of the Aleutian Basin in the Bering Sea are closely related to the change of surface current system caused by sea level variation during the last glacial period.

Intergrowth and Interlayering of Muscovite, Chlorite, and Biotite in a Garnet Zone Metamorphic Rock of the Ogcheon Belt, South Korea (옥천대의 석류석데 변성암에서 산출되는 백운모, 녹니석 및 흑운모의 Intergrowth와 Interlayering)

  • Yeong Boo Lee;Jung Hoo Lee;Chang Whan Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.122-131
    • /
    • 2002
  • Muscovite, chlorite and biotite in metapelites of the Ogcheon Hetamorphic Belt are studied using electron probe microanalysis (EPMA), backscattered electron images (BEI) of scanning electron microscopy (SEM) and lattice fringe images of transmission electron microscopy (TEM). These minerals are observed to be intergrown under a polarized light microscope and are apparently interlayered below EPMA resolution; EPMA data often indicate mixtures of phyllosilicates such as muscovite/chlorite (M/C), biotite/chlorite (B/C), muscovite/pyrophyllite/chlorite (M/P/C). biotite/pyrophyllite/chlorite (B/P/C) or biotite/muscovite/chlorite (B/M/C). BEI observations show that the three minerals (muscovite, chlorite and biotite) are mixed at various scales in a grain through the garnet zone, and the interlayering of the three minerals are observed from TEM lattice fringe images and selected area electron diffraction patterns. The result of TEM observations reveals that 7-$\AA$ layers (serpentine, precursor of chlorite) are interlayered within 10-$\AA$ layers (muscovite) at 100~200 $\AA$ scale as well as M/C in the chlorite zone. The 7-$\AA$ layers become smaller in size and less frequent in the biotite tone, and 10-$\AA$ layers are interlayered with chlorite (14 $\AA$) at an individual layer scale. The 7-$\AA$ layers are no longer observed in the garnet zone, and 10-$\AA$ layers (biotite) are interlayered with chlorite (B/C) at 50~100 $\AA$ scale. Relatively large scale (1000~2000 $\AA$) of intergrowth is also frequently observed from the garnet zone samples. However, rocks from all three metamorphic zones show interlayering of a few units of 7-, 10- and 14-$\AA$ layers with each other at TEM observations. The result of this study implies that metamorphic minerals such as muscovite, chlorite and biotite form through disequilibrum mineral reactions resulting in inhomogenious phases.

Clay Mineralogical Characteristics and Origin of Sediments Deposited during the Pleistocene in the Ross Sea, Antarctica (남극 로스해 대륙대 플라이스토세 코어 퇴적물의 점토광물학적 특성 및 기원지 연구)

  • Jung, Jaewoo;Park, Youngkyu;Lee, Kee-Hwan;Hong, Jongyong;Lee, Jaeil;Yoo, Kyu-Cheul;Lee, Minkyung;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.163-172
    • /
    • 2019
  • A long core (RS15-LC48) was collected at a site in the continental rise between the Southern Ocean and the Ross Sea (Antarctica) during the 2015 Ross Sea Expedition. The mineralogical characteristics and the origin of clay minerals in marine sediments deposited during the Quaternary in the Ross Sea were determined by analyzing sedimentary facies, variations in grain size, sand fraction, mineralogy, clay mineral composition, illite crystallinity, and illite chemical index. Core sediments consisted mostly of sandy clay, silty clay, or ice rafted debris (IRD) and were divided into four sedimentary facies (units 1-4). The variations in grain size distribution and sand content with depth were very similar to the variations in magnetic susceptibility. Various minerals such as smectite, chlorite, illite, kaolinite, quartz, and plagioclase were detected throughout the core. The average clay mineral composition was dominated by illite (52.7 %) and smectite (27.7 %), with less abundant clay minerals of chlorite (11.0 %) and kaolinite (8.6 %). The IC and illite chemical index showed strong correlation trends with depth. The increase in illite and chlorite content during the glacial period, together with the IC and chemical index values, suggest that sediments were transported from the bedrocks of the Transantarctic Mountains. During the interglacial period, smectite may have been supplied by the surface current from Victoria Land, in the western Ross Sea. High values for IC and the illite chemical index also indicate relatively warm climate conditions during that period.

Manufacturing Method and Characteristics of the Dongrok(copper chloride) pigments (동록(염화동) 안료의 제조방법 및 특성에 관한 연구)

  • KANG Yeongseok;PARK Juhyun;MUN Seongwoo;HWANG Gahyun;KIM Myoungnam;LEE Sunmyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.2
    • /
    • pp.148-169
    • /
    • 2023
  • Hayeob pigment is known as one of the traditional dark green pigments, but the color, raw material, and manufacturing method have not been clearly identified. However, comparing the analysis results of the particle shape and constituent minerals of Hayeob pigments revealed through pigment analysis studies of colored cultural properties such as Dancheong, Gwaebul, and paintings, Hayeob pigments appear to be the same as Dongrok pigments produced by salt corrosion. Therefore, in order to restore Hayeob pigment, the manufacturing method of Dongrok pigment was studied based on the records of old literature. The Dongrok pigment manufacturing method confirmed in the old literature records is a natural corrosion method in which copper powder and a caustic are mixed and then left in a humid condition to corrode. Based on this, artificial corrosion using a corrosion tester was adopted to corrode the copper powder more efficiently, and an appropriate mixing ratio was selected by analyzing the state of corrosion products according to the mixing ratio of the caustic agent. In addition, the manufacturing method of Dongrok pigment was established by adding a salt removal process to remove residual caustic agents and a purification process to increase chroma during pigment coloring. The prepared Dongrok pigments have a bluish green or green color, show an elliptical particle shape and a form in which small particles are aggregated, and a porous surface is observed. The main constituent elements are copper(Cu) and chlorine(Cl), and the main constituent mineral is identified as atacamite [Cu2Cl(OH)3]. As a result of an accelerated weathering test to evaluate the stability of the prepared Dongrok pigments, it was found that the greenness partially decreased and the yellowness significantly increased as deterioration progressed. Before deterioration, the Dongrok pigments had lower yellowness compared to the Hayeob pigments of the old Dancheong, but after deterioration, yellowness increased significantly, and it was found to have a similar chromaticity range as Dancheong's Hayeob pigments. As a result, the prepared Dongrok pigments were confirmed to be similar to Dancheong's Hayeob pigments in terms of color as well as particle shape and constituent minerals.

Applied-Mineralogical Characterization and Assessment of Some Domestic Bentonites (II): Mineralogical Characteristics, Surface Area, Rheological Properties, and Their Relationships (국내산 벤토나이트에 대한 응용광물학적 특성 평가 (II): 광물학적 특징, 체표면적 및 유변학적 특성과 그 연계성)

  • 노진환;유재영;최우진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-47
    • /
    • 2003
  • Various applied-mineralogical characterization including measurements of surface area, size distribution, swelling index, and viscosity were done for some domestic bentonites in order to decipher the rheological properties and their controlling factors. The bentonites, which are Ca-type and relatively low-grade (rnontmorillonite contents: 30 ∼ 75 wt%), occur mostly as subhedral lamellas with the size range of 2 ∼ 4 $\mu\textrm{m}$. The size distribution of mineral fractions in bentonite suspension is dominant in the range of 10 ∼ 100 $\mu\textrm{m}$, and though rather complicated, exhibits roughly bimodal patterns. The feature is more conspicuous in the case of zeolitic bentonite. The bentonites have surface areas ranging 269 ∼ 735 $\m^2$/g, which are measured by EGME adsorption method. The EGME surface areas are nearly proportional to the rnontmorillonite contents, moisture contents, or total CEC. In the surface area measurements, zeolitic bentonites have slightly higher values than those zeolite- free types. The measured swelling index and viscosity of domestic bentonites are comparatively low in values. The swelling values of bentonites were measured to be 250∼500% at maximum by progressively mixing amounts of 2 ∼ 5 wt% Na$_2$CO$_3$, which varies depending on the contents of rnontmorillonite and other impurities, especially zeolite. Much amount of sodium carbonate is required for optimum swelling property of zeolitic bentonited which has usually strong Na- exchanged capacity. The bentonites, which are comparatively feldspar-rich and low in size and crystallinity, tend to be higher in viscosity values. Tn addition, the viscosity is largely higher in case of the bentonites with higher pH in suspension. However, the rheological properties of bentonites such as swelling index and viscosity do not show any obvious relationships with rnontmorillonite contents and mean particle size in suspension. In contrast, roughly speaking, the swelling index of bentonites is reversely proportional to the values of surface area which can be regarded as a collective physico-chemical parameter encompassing all the effects caused by mineral composition, surface charge, particle size, morphological farm, and etc. in bentonites. Thus, the rheological properties in bentonite suspension appear to be rather complicated characteristics which mainly depend on the flocculation of clay particles and the mode of particle association, i.e. quasicrystals, controlled by surface charge, morphology, size, and texture of rnon-tmorillonite, and which partly affected by the finer impurities such as zeolite.

Pedological Characteristics of Asian Dust in Korea (한국에 강하한 황사의 토양학적 특성)

  • Zhang, Yong-Seon;Kim, Yoo-Hak;Sonn, Yeon-Kyu;Lee, Gye-Jun;Kim, Myung-Sook;Kim, Sun-Kwan;Weon, Hang-Yeon;Joa, Jae-Ho;Eom, Ki-Cheol;Kim, Sang-Hyo;Kwak, Han-Kang;Kim, Han-Myeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.301-306
    • /
    • 2005
  • Asian dust was collected in Korea and soils in the arid area of northern China were analysed for its physical and chemical properties, and mineral compositions for in order to interpret the origin of Aeolian soils and estimate the effect of dust wind on the soil environment in Korea. Asian dust was collected at Suwon in Korea from 2002 to 2004. Soil samples were collected from the desert and Loess plateaus around Gobi desert in China. As a result of analysis of desert soil distributed on northern region and Loess soils in China, it was observed that soil pH was about 9, organic matter 11 to $23g\;kg^{-1}$, and CEC 7.1 to $18.4cmolc\;kg^{-1}$, showing a high spatial variation among different sampling locations. About 62 to 80% of particles were composed of quartz and feldspars, 2 to 14% calcite ($CaCO_3$) and dolomite [$Ca{\cdot}Mg(CO_3)_2$], and trace other clay minerals. All the dust particles in Korea were below 50 m in diameter, and the mineral compositions were quartz, mica, feldspar and some clay minerals. Major components of clay mineral of Asian dust was mainly illite as compared to the kaolin of soils in Korea. The base saturation of exchangeable Ca, Mg, K and Na in the Asian dust was above 250% due to the high content calcite. Most of upland soil in Suwon was thin and sharp type, but Asian dust in Korea was the spherical shape. Asian dusts in Suwon, Korea, did not show a definite mineralogical variation of the dust during the collection period. Difference between the Asian dust collected in Korea and the soils in arid area of China was observed in the physical and chemical properties, especially for particle size distribution, cations such as Ca, Mg, K and Na. However, some similarities were found on the mineral compositions and chemical properties between Asian dust collected in Korea and the loess of China.

Micromorphological and Mineral Characteristics of the Jang-won Series which have Fragipan in the soil Profile (경반층 토양인 장원통의 미세형태학적 및 광물학적 특성)

  • Moon, Yong-Hee;Zhang, Yong-Seon;Chun, Hyen-Chung;Sonn, Yeon-Kyu;Hyun, Byung-Keun;Park, Chan-Won;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.916-921
    • /
    • 2011
  • This study was carry out on a Jang-Won series (fine loamy, mixed, mesic family of typic fragipan) that were established and classified as a fragipan soil in Korea. The morphological, physical, chemical and minerals characteristics of Jang-Won series were studied to determine the genesis of fragipan soils in natural environment. Each sample was analyzed for its physical, chemical and mineralogical characteristics. The particle size distribution of samples was measured using pipette method. Clay minerals were investigated on parallel-oriented specimens of the clay fraction ($<2{\mu}m$) from each horizon, separated by sieving and centrifugation, using X-ray diffraction (XRD) analysis. Micromorphological observations were made on thin sections prepared from soil blocks impregnated with Crystic Resin, cut and ground to less than $30{\mu}m$ in thickness, and finally polished with diamond paste. Most horizons have pH values in the range of fewer than 5.0 and have very low base-saturation values. Their textural classification ranges from silt loam to loam, the lower horizons being the finer. The clay fraction revealed the occurrence of illite, kaolinite, chlorite and vermiculite. The micro-morphological analysis carries out thin sections from each soil profile. The silt concentrations occur as extremely dense and homogenous bands or zones of silt-sized materials, brownish in colour in plane-polarized light and anisotropic in cross-polarized light, surrounding or adhering to skeleton grains. The genesis of fragipan in the Jangweon series assumed composition of clay fraction rather than silt concentration. Therefore, this results suggested an authentic interpretation which Jangweon series is classification as Typic Fragiochrepts.

Application of Automated Microscopy Equipment for Rock Analog Material Experiments: Static Grain Growth and Simple Shear Deformation Experiments Using Norcamphor (유사물질 실험을 위한 자동화 현미경 실험 기기의 적용과 노캠퍼를 이용한 입자 성장 및 단순 전단 변형 실험의 예)

  • Ha, Changsu;Kim, Sungshil
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.233-245
    • /
    • 2021
  • Many studies on the microstructures in rocks have been conducted using experimental methods with various equipment as well as natural rock studies to see the development of microstructures and understand their mechanisms. Grain boundary migration of mineral aggregates in rocks could cause grain growth or grain size changes during metamorphism or deformation as one of the main recrystallization mechanisms. This study suggests improved ways regarding the analog material experiments with reformed equipment to see sequential observations of these grain boundary migration. It can be more efficient than the existing techniques and carry out an appropriate microstructure analysis. This reformed equipment was implemented to enable optical manipulation by mounting polarizing plates capable of rotating operation on a stereoscopic microscope and a deformation rig capable of experimenting with analog materials. The equipment can automatically control the temperature and strain rate of the deformation rig by microcontrollers and programming and can take digital photomicrographs with constant time intervals during the experiment to observe any microstructure changes. The composite images synthesized using images by rotated polarizing plates enable us to see more accurate grain boundaries. As a rock analog material, norcamphor(C7H10O) was used, which has similar birefringence to quartz. Static grain growth and simple shear deformation experiments were performed using the norcamphor to verify the effectiveness of the equipment. The static grain growth experiments showed the characteristics of typical grain growth behavior. The number of grains decreases and the average grain size increases over time. These case experiments also showed a clear difference between the growth curves with three temperature conditions. The result of the simple shear deformation experiment under the medium temperature-low strain rate showed no significant change in the average grain size but presented the increased elongation of grain shapes in the direction of about 53° regarding the direction perpendicular to the shearing direction as the shear strain increases over time. These microstructures are interpreted as both the plastic deformation and the internal recovery process in grains are balanced by the deformation under the given experimental conditions. These experiments using the reformed equipment represent the ability to sequentially observe changing the microstructure during experiments as desired in the tests with the analog material during the entire process.