• Title/Summary/Keyword: 광물용해도

Search Result 106, Processing Time 0.108 seconds

Study on the Geochemical Weathering Process of Sandstones and Mudstones in Pohang Basin at CO2 Storage Condition (지중저장 조건에서 초임계CO2에 의한 포항분지 사암과 이암의 지화학적 풍화반응 연구)

  • Park, Jinyoung;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.221-234
    • /
    • 2013
  • Laboratory experiments for the reaction with supercritical $CO_2$ under the $CO_2$ sequestration condition were performed to investigate the mineralogical and geochemical weathering process of the sandstones and mudstones in the Pohang basin. To simulate the supercritical $CO_2$-rock-groundwater reaction, rock samples used in the experiment were pulverized and the high pressurized cell (200 ml of capacity) was filled with 100 ml of groundwater and 30 g of powdered rock samples. The void space of the high pressurized cell was saturated with the supercritical $CO_2$ and maintained at 100 bar and $50^{\circ}C$ for 60 days. The changes of mineralogical and geochemical properties of rocks were measured by using XRD (X-Ray Diffractometer) and BET (Brunauer-Emmett-Teller). Concentrations of dissolved cations in groundwater were also measured for 60 days of the supercritical $CO_2$-rock-groundwater reaction. Results of XRD analyses indicated that the proportion of plagioclase and K-feldspar in the sandstone decreased and the proportion of illite, pyrite and smectite increased during the reaction. In the case of mudstone, the proportion of illite and kaolinite and cabonate-fluorapatite increased during the reaction. Concentration of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased during the reaction, suggesting that calcite and feldspars of the sandstone and mudstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites in Pohang basin. The average specific surface area of sandstone and mudstone using BET analysis increased from $27.3m^2/g$ and $19.6m^2/g$ to $28.6m^2/g$ and $26.6m^2/g$, respectively, and the average size of micro scale void spaces for the sandstone and mudstone decreased over 60 days reaction, resulting in the increase of micro pore spaces of rocks by the dissolution. Results suggested that the injection of supercritical $CO_2$ in Pohang basin would affect the physical property change of rocks and also $CO_2$ storage capacity in Pohang basin.

Characterization of the Behavior of Naturally Occurring Radioactive Elements in the Groundwater within the Chiaksan Gneiss Complex : Focusing on the Mineralogical Interpretation of Artificial Weathering Experiments (치악산 편마암 지질의 지하수 내 자연 방사성 원소의 거동 특성 연구: 인공풍화 실험을 통한 광물학적 해석)

  • Woo-Chun Lee;Sang-Woo Lee;Hyeong-Gyu Kim;Do-Hwan Jeong;Moon-Su Kim;Hyun-Koo Kim;Soon-Oh Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • The study area was Gangnim-myeon, Hoengseong-gun, Gangwon-do, composed of the Chiaksan gneiss complex, and it was revealed that the concentrations of uranium (U) and thorium (Th) within the groundwater of the study area exceeded their water quality standards. Hence, artificial weathering experiments were conducted to elucidate mineralogically the mechanisms of their leaching using drilling cores obtained from the corresponding groundwater aquifers. First of all, the mineralogical compositions of core samples were observed, and the results indicated that the content of clinochlore, a member of the chlorite group of minerals that can form through low- and intermediate-temperature metamorphisms, was relatively higher. In addition, the Th concentration was measured ten times higher than that of U. The results of artificial weathering experiments suggested that the Th concentrations gradually increased through the dissolution of radioactive-element-bearing minerals up to the first day, and then they tended to decrease. It could be attributed to the fact that Th was leached with the dissolution of thorite, which might be a secondary mineral, and then dissolved Th was re-precipitated as the various forms of salt, such as sulfate. Even though the U content was lower than that of Th in the core samples, the U concentration was one hundred times higher than that of Th after the weathering experiments. It is likely caused by the gradual dissolution and desorption of U included in intensively weathered thorite or adsorbed as a form of UO22+ on the mineral surface. In addition, the leaching tendency of U and Th was positively correlated with the bicarbonate concentration. However, the concentrations between U and Th in groundwater exhibited a relatively lower correlation, which might result from the fact that they occurred from different sources, as aforementioned. Among various kinetic models, the parabolic diffusion and pseudo-second-order kinetic models were confirmed to best fit the dissolution kinetics of both elements. The period that would be taken for the U concentration to exceed its drinking-water standard was inferred using the regressed parameters of the best-fitted models, and the duration of 29.4 years was predicted in the neutral-pH aquifers with relatively higher concentrations of HCO3, indicating that U could be relatively quickly leached out into groundwater.

Feldspar Diagenesis and Reseuoir History of the Miocene Temblor Formation, Kettleman North Dome, California, U.S.A. (미국 캘리포니아주 케틀만 노스돔의 마이오세 템블러층에서 장석의 속성작용과 저류암의 발달사)

  • Lee Yong Il;Boles James R.
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.16-27
    • /
    • 1995
  • The Early Miocene Temblor Formation forms an important sandstone reservoir at Kettleman North Dome oil field, California. Sandstones are mostly arkosic in composition except deepest sandstones containing much volcanic rock fragments. Arranged in paragenetic sequence prior to feldspar alteration, the Temblor sandstones contain cements of early calcite, dolomite, quartz, albite, mixed-layer ohloriteismectite (C/S) and smectite, and anhydrite. Diagenetic changes associated with feldspar are albitization of plagioclase, late calcite and laumontite cementation and grain replacement, plagioclase dissolution, and kaolinite cementation. Plagioclase albitization and late calcite and laumontite cementation in Temblor sandstones occurred at the time of maximum burial with temperatures up to $130^{\circ}C$. Volcanic plagioclases were selectively albitized. Most diagenetic changes are interpreted to have occurred before the maior uplift which occurred within the last one million years ago. Since then to the time of hydrocarbon emplacement plagioclase dissolution and kaolinite cementation occurred. This reaction occurred in relatively closed system due to the occurrence of kaolinite next to the site of plagioclase dissolution. Unaltered part of volcanic plagioclase and plutonic plagioclase which escaped albitization during maximum burial were preferentially dissolved to make plagioclase porosity. Secondary porosity resulting from dissolution of plagioclase and carbonate and anhydrite cements was mainly produced by formation waters containing organic acids released during atagenesis of organic matter.

  • PDF

Physicochemical Characteristics of Zeolite Mineral by Alkali Solution Treatment (알칼리 처리에 의한 Zeolite 광물의 물리화학적 특성)

  • Yim, Going
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.119-127
    • /
    • 1996
  • The effect of sodium hydroxide treatment on some physicochemical properties of zeolite mordenite mineral was studied with chemical analyses, powder X-ray diffraction, thermal analyses, infrared analysis, measurement of carbon dioxide adsorption and gas chromatography. Mordenite mineral from tuffaceous rocks in Yeongil and Wolsung area was used as a starting material and treated with 0.1-5N NaOH aqueous solution at about $95^{\circ}C$ in the water bath for three hours.At the concentration of sodium hydroxide below 0.5N, all chemical compositions in the tuff were virtually insoluble and the mordenite structure did not change. At the concentration above 1N, the chemical compositions such as silica, alumina, etc., were dissolved. The dissolution ratio of silica was lager than that of alumina, and the ratio of silica to alumina in the tuff decreased sharply in the concentration range of 2 to 3N. Intensity of X-ray diffraction peak of mordenite (202) plane and the adsorbed amount of carbon dioxide also decreased with the increasing concentration of sodium hydroxide above 1N. These decreases corresponded to the degree of mordenite structure collapsed.The separation of gas chromatography of nitrogen, oxygen and carbon monoxide was not affected by the sodium hydroxide treatment, but elution peaks of methane and krypton tended to be broadened and their retention time was shortened. The elution peaks of both methane and krypton tended to be overlapped with those of nitrogen and oxygen.

  • PDF

A Study on the Selective Leaching of the Copper Component by Sulfation Process (황산화 배소법에 의한 구리성분의 선택적 침출연구)

  • Kim, Woo Jin;Kim, Joon Soo;Kim, Myong Jun;Tran, Tam;Lee, Jin-Young;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.25 no.5
    • /
    • pp.57-63
    • /
    • 2016
  • This study were carried out sulfation roasting and selective leaching test for the effective recovery of copper component in concentrate obtained by froth floatation of Autrallian low grade copper ore. The optimum conditions of sulfation roasting were temp. $450^{\circ}C$, $Na_2SO_4$ 2 mole ratio and time 1.5 h, and then selective leaching were room temperature and $H_2O$ or 1M $H_2SO_4$ solutions. Leaching efficiency of optimum sulfation product were 90 wt.% of copper, 20 wt.% of iron and 15wt.% of nickel elements. In this results, it was possible to selective decomposition leaching of the copper component under optimum conditions in this research.

Effect of Redox Processes and Solubility Equilibria on the Behavior of Dissolved Iron and Manganese in Groundwater from a Riverine Alluvial Aquifer (만경강 하천변 충적 지하수의 용존 Fe와 Mn 거동에 대한 산화-환원 과정과 용해 평형의 효과)

  • Choi, Beom-Kyu;Koh, Dong-Chan;Ha, Kyoo-Chul;Cheon, Su-Hyun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.29-45
    • /
    • 2007
  • Biogeochemical characteristics involving redox processes in groundwater from a riverine alluvial aquifer was investigated using multi-level monitoring wells (up to 30m in depth). Anaerobic conditions were predominant and high Fe ($14{\sim}37mg/L$) and Mn ($1{\sim}4mg/L$) concentrations were observed at 10 to 20 m in depth. Below 20 m depth, dissolved sulfide was detected. Presumably, these high Fe and Mn concentrations were derived from the reduction of Fe- and Mn-oxides because dissolved oxygen and nitrate were nearly absent and Fe and Mn contents were considerable in the sediments. The depth range of high Mn concentration is wider than that of high Fe concentration. Dissolved organics may be derived from the upper layers. Sulfate reduction is more active than Fe and Mn reduction below 20 m in depth. Disparity of calculated redox potential from the various redox couples indicates that redox states are in disequilibrium condition in groundwater. Carbonate minerals such as siderite and rhodochrosite may control the dissolved concentrations of Fe(II) and Mn(II), and iron sulfide minerals control for Fe(II) where sulfide is detected because these minerals are near saturation from the calculation of solubility equilibria.

Gold Recovery from Geumsan Concentrate Using Microwave-nitric Acid Leaching and Lead-fire Assay (마이크로웨이브-질산용출과 납-시금법을 이용한 금산정광으로부터 금 회수)

  • Lee, Jong-Ju;On, Hyun-Sung;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.113-126
    • /
    • 2019
  • This study aimed to effectively dissolve sulfide minerals through microwave-nitric acid leaching of invisible gold concentrate and then recover gold from the solid-residue with fire assay. For the purposes, this study conducted microwave-nitric acid leaching experiments to examine nitric acid concentration, time of microwave leaching, and sample addition effect. As results of the experiments, this study discovered that the weight loss rate of solid-residue increased as nitric acid concentration and microwave leaching time increased while weight loss rate decreased as sample addition increased. In an XRD analysis with solid-residue, it was discovered that pyrite completely disappeared when the nitric acid concentrate was 6 M and the microwave leaching time was 18 minutes. When a fire assay was carried out with solid-residue, gold particles with more content were recovered as nitric acid concentration and microwave leaching time increased whereas gold particles with more gold content were recovered as the sample addition decreased.

Environmental Characteristics of Groundwater for Sedimetary Rocks in Daegu City (대구시 퇴적암 분포 지역의 지하수에 대한 환경지화학적 특성)

  • 이인호;조병욱;이병대
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2003
  • Geochemical characteristics of groundwater in the different kinds of various lithology such as Haman formation, Panyaweol formation, Jusan andesitic formation and Palgongsan granite is distinguished by mineralogical and chemical compositions. The Concentration of the majority of solutes in groundwaters of Haman and Panyaweol formation is higher than in that of andesite and granite. Higher concentration of $HCO_3^{-}{\;}and{\;}SO_4^{2-}$ anions in the groundwater is peculiar. High concentrations of $Ca^{2+},{\;}Mg^{2+},{\;}HCO_3^{-}$ in the groundwaters of the sedimentary rocks result mainly from reaction of $CO^{2-}$ charged water with calcite and weathered feldspars. With the Piper diagram, the groundwaters of Haman formations are mainly plotted in $CaSO_4-CaCl_2$ type, whereas those of Panyaweol formations are plotted in the bothside of $Ca(HCO_3)_2{\;}and{\;}CaSO_4-CaCl_2$ type. Thses two different types of $Ca(HCO_3)_2{\;}and{\;}CaSO_4-CaCl_2$ groundwater were originated from dissolution of calcite($Ca(HCO_3)_2)$ and the oxidation of pyrite($CaSO_4-CaCl_2$), respectively. And it also is influenced by anthropogenic contamination. Three factors were extracted from the factor analysis for chemical data. Factor 1, controlled by $SO_4^{2-},{\;}Na^{+},{\;}Ca^{2+}$ and Fe, explains the dissolution of calcite, plagioclase and oxidation of pyrite. Factor 2, controlled by $HCO_3^{-}{\;}and{\;}Mg^{2+}$, mainly explains the dissolution of Mg-carbonates and dolomitization. Factor 3, controlled by $Cl^{-},{\;}K^{+}{\;}and{\;}NO_3^{-}$, is subject to the influence of artificial pollution including industrial waste water disposal. In this study area, some industrial complex which is close to Keumho river show the higher score of factor 3.

The Mineralogical and Chemical Characteristics of Fe Impurities and the Efficiency of their Removal Using Microwave Heating and Magnetic Separation in the Pyrophyllite Ore (엽납석광석에 존재하는 Fe 불순물의 광물학적/화학적 특성과 마이크로웨이브 가열 및 자력분리에 의한 제거효과)

  • Cho, Kang-Hee;Kim, Bong-Ju;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.47-58
    • /
    • 2016
  • The Fe-component of pyrophyllite is an impurity that reduces its grade in the final product. In order to identify the amount of impurity in pyrophyllite and to remove the Fe from the ore using a dry method, microwave heating and magnetic separation were carried out. Pyrite and hematite were identified to contain pyrophyllite by microscopy, XRD, XRF, SEM/EDS and EPMA analysis. It is suggested that the euhedral pyrite in the pyrophyllite is formed by hydrothermal solution, and then the dissolution cavity structure is formed with a partial remainder of the pyrite which dissolved in acidic water. And the $Fe^{3+}$ ion contained in the acidic water precipitated out in the concentric structure of hematite as the origin of sedimentary structure. As a result of the microwave heating and magnetic separation experiments, the Fe removal rates obtained were 96% and 93% from pyrophyllite ore from the Sunsan mine and Wando mine, respectively. It is confirmed that the microwave heating and magnetic separation method was an environmentally friendly method to upgrade the low-grade pyrophyllite.

Geochemical Reactive Experimental and Modeling Studies on Caprock in the Pohang Basin (포항분지 덮개암에 대한 지화학적 반응 실험 및 모델링 연구)

  • Kim, Seon-ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.371-380
    • /
    • 2016
  • This study aims to identify the mineraloical and petrographical characteristics of caprock from drilling cores of Pohang basin as a potential $CO_2$ storage site. Experiments and modeling were conducted in order to investigate the geochemical and mineralogical caprock effects of carbon dioxide. A series of autoclave experiments were conducted to simulate the interaction in the $scCO_2$-caprock-brine using a high pressure and temperature cell at $50^{\circ}C$ and 100 bar. Geochemical and mineralogical alterations after 15 days of $scCO_2$-caprock-brine sample reactions were quantitatively examined by XRD, XRF, ICP-OES investigation. Results of mineralogical studies, together with petrographic data of caprock and data on the physicochemical parameters of brine were used for geochemical modeling. Modelling was carried out using the The Geochemist's Workbench 11.0.4 geochemical simulator. Results from XRD analysis for caprock sample showed that major compositional minerals are quartz, plagioclase, and K-feldspar, and muscovite, pyrite, siderite, calcite, kaolinite and montnorillonite were included on a small scale. Results from ICP-OES analysis for brine showed that concentration of $Ca^{2+}$, $Na^+$, $K^+$ and $Mg^{2+}$ increased due to dissolution of plagioclase, K-feldspar and muscovite. Results of modeling for the period of 100 years showed that the recrystallization of kaolinite, dawsonite and beidellite, at the expense of plagioclase and K-feldspar is characteristic. Volumes of newly precipitation minerals and minerals passing into brine were balanced, so the porosity remained nearly unchanged. Experimental and modeling results indicate the interaction between caprock and $scCO_2$ during geologic carbon sequestration can exert significant impacts in brine pH and solubility/stability of minerals.