• Title/Summary/Keyword: 광디스크 드라이브

Search Result 155, Processing Time 0.026 seconds

Dynamic Analysis of an Optical Disk Drive for Wide Range Vibration Reduction by Using Dynamic Vibration Absorber (광디스크 드라이브의 광대역 진동저감을 위한 동흡진기 설계 및 동특성 해석)

  • 이동철;정진태;홍순교;김홍렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.979-984
    • /
    • 2003
  • A Dynamic vibration absorber(DVA) is developed to reduce the excessive vibration of an optical disk drive(ODD) originated from the deriving range of an wobble disk and unbalanced disk. We design the material properties and shapes of the DVA by simulating Frequency response function(FRF) such as target frequency, mass of the DVA, stiffness of damper, damping coefficient, shape and dimension, analyze dynamic characteristics and provide its design guide line for suppressing the vibration of an optical disk derive. To examine the performance of the DVA, the vibration of the feeding system with DVA and without DAA are measured by using a three-axis accelerometer, PCB derive and Pulse analyzer. The result show that the proposed DVA reduces the vibration of wide range in ODD.

  • PDF

Inertia Latch Design for Micro Optical Disk Drives (초소형 광리스크 드라이브용 관성 래치 설계)

  • 김유성;김경호;유승헌;김수경;이승엽
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.287-294
    • /
    • 2004
  • Dynamic Load/unload (L/UL) mechanism is an alternative to the contact start stop (CSS) technology which eliminates striction and wear failure modes associated with CSS. Inertia latch mechanism becomes important for mobile disk drives because of non operating shock performance. Various types of latch designs have been introduced in hard disk drives to limit a rotary actuator from sudden uncontrolled motion. In this paper, a single spring inertia latch is introduced for a small form optical disk drive, which uses a rotary actuator for moving an optical pick-up. A new small inertia latch with sin91e spring is designed to ensure both feasible and small size. The shock performance of the new inertia latch is experimentally verified.

Dynamic Analysis and Optimum Design of Suspensions for Information Storage Devices (정보저장기기 서스펜션의 동특성 해석 및 최적설계)

  • Kim, Yunsik;Lee, Jongsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.359.2-359
    • /
    • 2002
  • To satisfy operation condition in information storage device, the suspension shape is very important since it correlates to dynamic characteristics. Therefore, it is necessary to analyze the dynamic characteristics by using finite element analysis, shape optimization. The suspension has various modes according to different kinds of frequency bandwidth. Sway mode and second torsion mode are especially critical among them. (omitted)

  • PDF

An Experimental Study of Flow Fields in an Optical Disc Drive (광 디스크 드라이브 내부 유동장에 관한 실험적 연구)

  • Jung, Ji-Won;Cho, Hyung-Hee;Choi, Myung-Ryul;Seong, Pyoung-Yong;Lee, Kyoung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1789-1794
    • /
    • 2004
  • The present study investigates flow characteristics in an optical disc drive. Detailed knowledge of the flow characteristics is essential to analyze flow-induced noise and vibration, forced convection and flow friction loss. The ODD used in the personal computer is used for the experiment and rotating velocity of disc is under the 4500 rpm. Time-resolved velocity components and velocity spectrum are obtained using the laser Doppler anemometry (LDA). The results show that the front holes reduce now-induced noise and the position of pickup body affects flow near the window. In addition, il is possible for cooling of heat sources in an optical disc drive through measuring the flow fields under the tray.

  • PDF

Piezoelectric Beam Rotating Actuator for Multiple Beam Disk Drives (압전소자률 이용한 다중빔 광디스크용 빔 회전 구동기)

  • 김병준;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.154-159
    • /
    • 2000
  • A multi-beam optical disk drive is presented as a method for improving the effective data transfer rate by increasing the beam spot number formed on an optical disk. The beam rotating actuator is necessary for putting multi-beam on more than one track. The beam rotating actuator is made up of piezoelectric material, high stiffness wire hinge and dove prism. The actuator has good frequency response above 1KHz and suitable operational range. The dynamic equation for the actuator is derived.

  • PDF

A Study on Flow Fields in an Optical Disc Drive (광 디스크 드라이브 내부 유동장에 관한 연구)

  • Jung Ji Won;Choi Myung-Ryul;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.224-231
    • /
    • 2005
  • The present study investigates flow characteristics in an optical disc drive (ODD). Detailed knowledge of the flow characteristics is essential to analyze flow-induced noise and vibration, forced convection and flow friction loss. The ODD used in a personal computer is used for the experiment and rotating velocity of disc is under the 4500 rpm. Time-resolved velocity component and velocity spectrum are obtained using the laser Doppler anemometry (LDA), and the flow patterns induced by rotating disc in the ODD are calculated by a commercial finite volume method at the same time. The results show that the front holes reduce flow-induced noise and the position of pickup body only affects flow near the window. Furthermore, it is possible for cooling of heat sources in the drive through measuring the flow fields under the tray. In addition, the numerical results are well matched up to the experimental results, therefore, the validation of the numerical results can be achieved. From the validation of numerical results, it is possible to predict the flow characteristics of the region where it is unable to conduct the experiment.

Robust Servo Design and Application for Optical Disk Drive Using Robust Control Theory : H vs. QFT (광 디스크 드라이브 서보 설계를 위한 강건 제어 이론의 적용 및 평가 : H vs. QFT)

  • Lee, Kwang-Hyun;Yang, Hyunseok;Park, No-Cheol;Park, Young-Pil;Choi, Jin-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1148-1159
    • /
    • 2005
  • In this paper, the various uncertainties generated in an optical disk drive (ODD) and the robust servo designs considering the uncertainties are studied. First, the brief introduction an ODD and the servo error tolerance of it are discussed. Then, the classifications of uncertainty and the concept of relative stability are introduced. Considering the uncertainty of an ODD, two robust control approaches are applied: (i) mixed sensitivity approach in H$\infty$ control theory for unstructured uncertainty, (ii) QFT for structured uncertainty Finally, the designed controllers are realized by DSP, and these controllers are applied to a commercial DVD-ROM drive. From these experiments, we prove that the designed robust controllers have more good disturbance rejection performance and robustness when it is compared to the conventional lead-lag controller.

Modeling of Feeding System for Optical Disk Drive and Nonlinear Dynamic Analysis of it (광 디스크 드라이브 이송계의 모델링 및 비선형 특성 분석)

  • Lee, Kwang-Hyun;Choi, Jin-Young;Park, Tae-Wook;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.75-78
    • /
    • 2004
  • In an optical disk drive, a feeding system which is used to move the optical pick-up system to the target position and the proper control scheme of it are important in random access performance. Since the effect of control is directly affected by the modeling precision of the real system, the precise modeling to the real system should be acquired. Although a simple linear order modeling to the feeding system of an optical disk drive is useful in understanding of the overall dynamic characteristics, the dynamic characteristics which are belongs to the nonlinear area cannot be predicted correctly. Furthermore, the feeding system of an optical disk drive has many nonlinear characteristics such as a nonlinear friction and backlash. For this reason, the understanding of the nonlinear properties in the feeding system is very important. In this paper, the nonlinear items of the feeding system, friction and backlash, are introduced and the effect of it are investigated. Finally, the mathematical model considering the nonlinear properties is compared to the real system, and some comments of it are given.

  • PDF

An Anti-vibration Design of Slim-type Optical Disk Drive (슬림형 광 디스크 드라이브의 방진설계)

  • Kim, Nam-Woong;Kim, Kug-Weon;Hong, Goo;Chung, Mun-Chae;Kim, Wae-Yeul
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.324-330
    • /
    • 1999
  • With the increase of track density, high rotational speed and the compatibility for various media such as CD-ROM, CD-R/RW, DVD-ROM/RAM/RW etc. in optical disk drive, the effective anti-vibration design is so crucial for robust operaton. Especailly when the drive is self-excited by unbalanced disk, internal sled base vibration and its external transmission to the case bring about so severe problem. Generally these two consideration points the practical anti-vibration design process to control thses two conflictive properties using finite element analysis. As an example of the design process, Duro 25 and 40 visco-elastic rubber mount was selected and analyzed. The stiffness obtained from FEM rubber model was well matched with the experiments. Also it was confirmed that the internal and external vibration induced from unbalanced disk have good agreement with experimental results. The proposed design process is adopted to the slim-type optical disk drive.

  • PDF