• Title/Summary/Keyword: 광대역소음

Search Result 107, Processing Time 0.024 seconds

Asymmetric Directionality of Broadband Ship Radiation Noise at Bow-Stern Aspect (광대역 선박방사소음의 선수-선미 비대칭 방향성)

  • Lee, Keunhwa;Kim, Minkyu;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.343-350
    • /
    • 2015
  • In this paper, we perform a study on the directionality of broadband ship radiation noise, mainly resulting from propeller cavitation. By examining a few foreign studies for ship radiation noise and domestic data measured in Korean waters, it is reconfirmed that the asymmetric directionality of the ship radiation noise at bow and stern aspect is observed commonly. In order to explore the reason of this asymmetric directionality, a numerical analysis, based on the acoustic boundary element method, is applied into the geometric form equal to the commercial ship used in the domestic experiment. The numerical result demonstrates that the diffraction of the propeller cavitation noise by ship is a primary cause of the bow-stern asymmetry in the directionality of ship radiation noise.

Modal acoustic power of broadband noise by interaction of a cascade of flat-plate airfoils with inflow turbulence (평판 에어포일 캐스케이드와 입사 난류의 상호작용에 의한 광대역 소음의 모달 음향 파워)

  • Cheong, Cheol-Ung;Jurdic, Vincent;Joseph, Phillip
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1467-1475
    • /
    • 2007
  • This paper investigates the modal acoustic power by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. Basic formulation for the acoustic power upstream and downstream is based on the analytical theory of Smith and its generalization due to Cheong et al. The acoustic power spectrum has been expressed as the sum of cut-on acoustic modes, whose modal power is the product of three terms: a turbulence series, an upstream or downstream power factor and an upstream or downstream acoustic response function. The effect of these terms in the modal acoustic power has been examined. For isotropic turbulence gust, the turbulent series are only reducing factor of the modal acoustic power. The power factor tends to reduce the modal acoustic power in the upstream direction, although the power factor is liable to increase the modal acoustic power in the downstream direction. The modes close to cut-off are decreasing strongly, especially in the downstream direction. Therefore the modes close to cut-off don't contribute highly to the radiated acoustic power in the downstream direction, although the modal acoustic pressure is high for these modes.

  • PDF

Characteristics of Modal Acoustic Power of Broadband Noise by Interaction of a Cascade of Flat-plate Airfoils with Inflow Turbulence (평판 에어포일 캐스케이드와 입사 난류의 상호작용에 의한 광대역 소음의 모달 음향 파워 특성)

  • Cheong, Cheol-Ung;Jurdic, Vincent;Joseph, Phillip
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This paper investigates the modal acoustic power by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. Basic formulation for the acoustic power upstream and downstream is based on the analytical theory of Smith and its generalization due to Cheong et al. The acoustic power spectrum has been expressed as the sum of cut-on acoustic modes, whose modal power is the product of three terms: a turbulence series, an upstream or downstream power factor and an upstream or downstream acoustic response function. The effect of these terms in the modal acoustic power has been examined. For isotropic turbulence gust, the turbulent series are only reducing factor of the modal acoustic power. The power factor tends to reduce the modal acoustic power in the upstream direction, although the power factor is liable to increase the modal acoustic power in the downstream direction. The modes close to cut-off are decreasing strongly, especially in the downstream direction. Therefore the modes close to cut-off don't contribute highly to the radiated acoustic power in the downstream direction, although the modal acoustic pressure is high for these modes.

Transform Domain Active Noise Control for Broadband Noise (광대역 소음의 변환영역 능동소음제어)

  • Kim, Jong-Boo;Lee, Tae-Pyo;Yim, Kook-Hyun
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.2
    • /
    • pp.48-55
    • /
    • 1998
  • The main drawback of filtered-X LMS(FXLMS) algorithm for the ANC of broadband noises is its low convergence speed when the filtered reference signals are strongly correlated, producing a large eigenvalue ratio in correlation matrix. This correlation can be caused either by autocorrelation of the signals of the reference sensors, or by coupling between the error path which introduces intercorrelation in the filtered reference signals. In this paper, we introduce a transform domain FXLMS(TD-FXLMS) algorithm that has a high convergence speed by orthogonal transform's decorrelation properties.

  • PDF

Computation of Broadband Noise of a 2-B Flat-airfoil Cascade Subject to Ingested Turbulence (난류 와류의 입사에 의한 이차원 평판 에어포일 캐스케이드의 광대역 소음장의 계산)

  • Cheong, Cheolung;Joseph Phillip;Lee, Soogab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.687-696
    • /
    • 2005
  • Acoustic power spectrum of the upstream and downstream sound field due to an isotropic frozen turbulent gust impinging on a cascade of flat plate airfoils are computed by using a analytic formulation derived from Smith's method, and Whitehead's LINSUB codes. A parametric study of the effects on sound power of the number of blades and turbulence length scale is performed with an emphasis on analyzing the characteristics of sound power spectrum. Through the comparison of the computed results of sound power, it is found that acoustic power spectrum from the 2-D cascade subject to a ingested turbulence can be categorized into two distinct regions. one is lower frequency region where some spectral components of turbulence do not contribute to the cut-on acoustic modes and therefore the effect of the cascade geometry is more dominant ; the other is higher frequency region where all of spectral components of turbulence make contributions to cut-on acoustic modes and thus acoustic power is approximately proportional to the blade number.

Time-domain Computation of Broadband Noise due to Turbulence - cascade Interaction (난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Lee, Soo-Gab;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.263-269
    • /
    • 2006
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipolar broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and the full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to turbulence-cascade interaction.

Time-domain Computation of Broadband Noise due to Turbulence-Cascade Interaction (난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산)

  • Cheong, Cheol-Ung;Jeong, Sung-Su;Cheung, Wan-Sup;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.812-817
    • /
    • 2005
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipole broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to gust-cascade interaction.

  • PDF

Study on Hidden Period Estimation in Propeller Noise by Applying Compressed Sensing to Auto-Correlation and Filter-Bank Structure (압축 센싱 기법을 자기상관 필터뱅크 방식에 적용한 광대역 프로펠러 소음 추정 기법 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Guk;Hong, Woo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2476-2484
    • /
    • 2015
  • Narrow band signal estimation and broad band signal estimation can be used to detect the ship-radiated noise. The broad band signal estimation method to detect the ship-radiated noise is called DEMON (Detection of Envelop Modulation On Noise). This paper proposes a new DEMON algorithm applying compressed sensing algorithm to filter bank and autocorrelation. We show the proposed algorithm estimates the hidden period in the wide band signal better than the conventional DEMON algorithm and the recently proposed filter-bank based DEMON algorithm. Especially we show that the proposed algorithm needs shorter data length than the conventional DEMON algorithm.