• Title/Summary/Keyword: 관통형 콘덴서

Search Result 2, Processing Time 0.02 seconds

An Experimental Study on the Reducing Method of Spurious Emission at the Spark Plug Cable (스파크 플러그 케이블에서 복사되는 불요 전자파 감소 방안에 대한 실험적 연구)

  • Kang, Sang-Won;Choe, Gwang-Je;Hur, Jung
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.10-15
    • /
    • 2013
  • This paper, we analyzed that the measured data of the radiated power spectrum of electromagnetic waves of the normal spark ignition system and the spark ignition system with feed through type ceramic condenser. The results show that the strength of power spectrum radiated from the system with feed through type ceramic condenser is weaker than the normal system, and the density of power spectrum radiated from the system with feed through type ceramic condenser is smaller than the normal system. From these results, the feed through type ceramic condenser can reduce the electromagnetic waves radiating from the spark ignition system which is the spurious emission, and it can be concluded that the ignition coil of the spark ignition system generating high voltage pulse is equivalent to the radio frequency oscillator which is oscillating high frequency from a electronic point of view.

Design and Fabrication of Broad-Band EMC Filter for Power Line (전원선에서의 광대역 EMC 필터의 설계 및 제작)

  • Kim, Dong-Il;Ku, Dong-Woo;Yang, Eun-Jung;Kim, Do-Yearn;Yea, Byeong-Dok
    • Journal of Navigation and Port Research
    • /
    • v.26 no.5
    • /
    • pp.525-528
    • /
    • 2002
  • The proposed EMC filter composed with feed-through capacitors and ferrite beads of high permeability was prepared which satisfy the EMC standard for a wide-band noise signal in the frequence of 10 MHz to 1.5 GHz in power supply line. The optimum structure of ferrite bead was found by calculating the load effect of ferrite beads. As a result, the filter showed excellent differential- and common-mode noises filtering characteristics above 30dB in the frequency band from 10 MHz to 1.5 GHz. The immunity characteristics are improved more than 10 to 30 dB over the frequency band from DC to 1.8GHz.