• Title/Summary/Keyword: 관통저항성

Search Result 25, Processing Time 0.022 seconds

Calculation of Wave Resistance of a Hybrid Hydrofoil (복합지지형 고속선의 조파저항 계산)

  • Yoo, J.H.;Kim, Y.G.;Lew, J.M.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • A potential-based panel method has been developed for numerical computation of wave resistance on a hybrid hydrofoil. Hybrid hydrofoil is composed of a main body, two struts and two hydrofoils. The main body, which is assumed to be an axisymmetric body for the present analysis, is normally used to support displacement of a body with its buoyancy. Normal dipoles and the sources are distributed on the body(main body, struts, hydrofoils) and the sources are distributed on the free surface. Linearized free surface and the radiation conditions are satisfied using the fourth order finite difference operator and the semi-linear pressure Kutta condition is used for the numerical computation of the hydrofoils. Poisson type free surface condition has been used for the numerical computation and hyperboloidal panel method has been used for better numerical accuracy. To verify this numeric method, model tests are performed in circulation water channel. From the comparison of experimental results with numeric ones, the present method can be used as a useful tool for the design of high speed vessels.

  • PDF

A Study on Insulation·Fire Proof Materials Using Silica Aerogels (실리카 에어로젤을 이용한 단열·내화재 개발에 관한 연구)

  • Cho, Myung Ho;Hong, Sungchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6816-6822
    • /
    • 2015
  • In this study, silica aerogel-glass wool composites were developed for improvement of thermal conductivity and overcoming the water adsorption of glass wool boards. Silica aerogel-glass wool composites were prepared by glass wool and silica aerogel with liquid binder. Mixtures with binder were composed of CMC (carboxymethyl cellulose) and silica aerogel for glass wool board. Silica aerogel-glass wool composite boards were had $0.065g/cm^3$ density by impregnation silica aerogel where from origin glass wool board at $0.048g/cm^3$ density. Thermal conductivity of silica aerogel-glass wool composites were 0.0315 W/mK (up to 7.4% thermal resistance) and fire penetration time came to 362 seconds (up to 2.7 times stronger than origin glass wool board). In addition, hydrophobic aerogel characteristics prevented the adsorption of water onto silica aerogel-glass wool composite boards that was good for lightweight.

Punch Properties of Some Vegetables (몇가지 채소류의 펀치특성)

  • Min, Young-Kyoo;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.273-278
    • /
    • 1997
  • In order to investigate the punch properties of some vegetables-cucumber, radish, garlic, ginger and potato-force, distance, and time were measured with a texturometer, and the correlations between compositions and cell characteristics of samples were characterized. Many reflection and rupture points on the force-distance and distance-time curve were observed, and these points appeared when the cells of sample were resisted and yielded against the applied force. They were big and clear at the slow crosshead speed. The regression analysis for force-time and distance-time to the rupture point showed $R^{2}>0.95$. The rupture time and rupure force were 5.63 sec, 4.88 N in ginger and 4.15 sec, 2.00 N in cucumber. The rupture forces become large values at the fast crosshead speed. As cell sizes were increased, the moisture content and rupture distance were increased, while the viscosity of juice, density, regularity of cell, and slope of force-time were decreased. Rupture force, time and distance were decreased at the large specific gravity of samples. The slopes of distance-time curve were inversely proportional to slope of force-time curve.

  • PDF

The Heat Transfer Performance of a Heat Pipe for Medium-temperature Solar Thermal Storage System (중온 태양열 축열조용 히트파이프의 열이송 성능)

  • Park, Min Kyu;Lee, Jung Ryun;Boo, Joon Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.69-69
    • /
    • 2011
  • 태양열 발전 플랜트에 사용되는 중고온 범위의 축열조에 고체-액체간 상변화를 수행하는 용융염을 축열물질로 사용하면 액체상 또는 고체상만으로 된 열저장 매체에 비해 축열조의 규모를 축소함과 동시에 축열온도의 균일성 향상에 기여할 수 있다. 중온인 $250{\sim}400^{\circ}C$ 범위에서 이용 가능한 용융염으로는 질산칼륨($KNO_3$), 질산리튬($LiNO_3$)등이 있다. 그러나 이러한 용융염의 가장 큰 단점은 열전도율이 매우 낮다는 것이며, 이로 인해 요구되는 열전달률을 성취하기 위해서는 많은 열접촉면적이 필요하다는 것이다. 이러한 단점을 극복하는 방법을 도입하지 않고서는 축열시스템의 소규화를 성취하는데 큰 효과를 가져올 수 없다. 한편 열수송 성능이 탁월한 히트파이프를 사용하면 열원 및 열침과 축열물질 사이의 열전달 효율을 증가시켜 시스템의 성능 향상과 동시에 소규모화에 기여할 수 있다. 중온 범위 히트파이프의 작동유체로서 다우섬-A(Dowtherm-A)는 $150^{\circ}C$이상 $400^{\circ}C$까지의 범위에서 소수에 불과한 선택적 대안 중 하나이다. 따라서 본 연구에서는 용융염을 사용하는 중온 태양열축열조에 적용 가능한 다우섬-A 히트파이프의 성능을 파악하여 기술적 자료를 제시하고자 하였다. 열원으로는 고온 고압의 과열증기, 그리고 열침으로는 중온의 포화증기를 고려하였다. 용융염 축열조를 수직으로 관통하는 히트파이프는 하단부에서 열원 증기와 열교환 가능하며, 중앙부에서 축열물질과 열교환하고, 상단부에서는 중온 증기와 접촉할 수 있도록 배치하였다. 축열모드에서는 히트파이프의 하단부가 증발부로 작동하고, 중앙부가 응축부로 작동하여 용융염으로 열을 방출하면 용융염의 온도가 상승하고 용융점에 도달하면 액상으로의 상변화가 진행되면서 축열이 활성화된다. 축열모드에서 히트파이프의 상단부는 단열부로 작동한다. 방열과정에서는 히트파이프의 하단부가 단열된 상태이고, 중앙부는 용융염으로부터 열을 받아 증발부로 작동하며, 상단부는 중온 증기로 열을 방출하므로 응축부로 작동한다. 즉, 축열시스템의 작동모드에 따라 하나의 히트파이프에서 증발부, 응축부, 단열부의 위치가 변하게 된다. 특히, 히트파이프의 중앙 부분이 응축부에서 증발부로 전환될 때에도 작동이 보장되려면 내부 작동유체의 연속적인 재순환이 가능해야 하므로, 일반 히트파이프에서와는 달리 초기 작동액체의 충전량을 증발부 전체의 체적보다 더 많이 과충전해야 한다. 이러한 히트파이프의 성능 파악을 위한 실험에서 고려한 변수들은 열부하, 작동액체의 충전률, 작동온도 등이며, 열수송 성능의 지표로서는 유효열전도율과 열저항을 이용하였다. 중온범위에서 적정한 작동온도를 성취하기 위해 실험에서는 전압 조절기로 열부하를 조절하는 동시에 항온조로 응축부의 냉각수 입구 온도를 제어하였다. 하나의 히트파이프에 대해서 최대 1 kW까지의 열부하에서 냉각수 입구 온도를 $40^{\circ}C$에서 $80^{\circ}C$ 범위로 변화시키면 히트파이프 작동온도를 약 $250^{\circ}C$ 내외로 조절 가능하였다. 히트파이프 작동액체 충전률은 윅구조물의 공극 체적을 기준으로 372%에서 420%까지 변화 시켰다. 실험 결과를 토대로 열저항과 유효 열전도율을 각각 입력 열유속, 작동온도, 작동액체 충전률 등의 함수로 제시했다. 동일한 냉각수 온도에서는 충전률이 높을수록 히트파이프의 작동온도가 감소하였다. 열저항 값의 범위는 최소 $0.12^{\circ}C/W$에서 최대 $0.15^{\circ}C/W$까지로 나타났으며 유효 열전도율의 값은 최소 $7,703W/m{\cdot}K$에서 최대 $8,890W/m{\cdot}K$까지 변화했다. 최소 열저항은 충전률 420%인 경우에 나타났는데 이때의 작동온도는 약 $262^{\circ}C$이었다. 히트파이프의 작동한계로서 드라이아웃(dry-out)은 충전률 372%의 경우에 열부하 950 W에서 발생하였으나, 그 이상의 충전률에서는 열부하 1060 W까지 작동한계 발생이 관찰되지 않았다. 실험 결과 본 연구에서의 히트파이프는 중온 태양열 축열조에 적용되어 개당 약 1 kW의 열부하를 이송하면서 축열물질 및 축방열 대상 유동매체와 열교환을 하는데 사용하는데 충분할 것이라 판단된다.

  • PDF

The Aspects of Change of Sijo (시조의 변이 양상)

  • Kang Myeoung-Hye
    • Sijohaknonchong
    • /
    • v.24
    • /
    • pp.5-46
    • /
    • 2006
  • Korean verse has flexibly changed its form and contents according to the historical background of the times. This fact arouses reader sympathy because it has reflected ideas, historical aspects and realities of the times. However, korean verse has kept its own characteristics in some ways, allowing it to exist today. It holds its form as 3 verses of three by three or four meter and three letters of the last of three verses. It makes every different version which has specific aspects of each times in the same 'sijo' area. 'Sijo' in Korean poems, is the first form that has been changed from formal to private functionally. As a result of that common verses in the Goryeo to Joseon eras were going with the stream of the times. Verse was the plate for justice so that there was no double meaning, symbols, or technical sentences. It had to show the idea of Myungchundo Jwonginryun. The theme was commonly fitted within certain areas. such as blessings, fidelity, devotion, etc. Around the end of the Joseon era, there was activation of private verses - a form of sijo with no restrictions on the length of the first two verses. Some ideas had been changed because Sarimpa gained power, domestic conflict, and the introduction of practical science. These things had an effect on the form of Sijo. After all, it shows the ideas of collapsing feudalism, resistance of confucian ideas, equality of the sexes, and opposition to the group who rule the government. Thus Sasul Sijo seems to have the tendency of resistance to reality. It was a specialty of realism poetry It explained our life in detail and reflected real life by being an intermediary of realism. This met and represented the demand of a reader's expectations. After 1905, there was new form of sijo that is very different, in form and content, from the previous versions. It was even different in areas of what people accepted. They started to think sijo was not the form of lyrical verse that is once was. It became a 'record of reading'. The form changed to 'hung or huhung' that satirized the times and the ending of a word in the last verse. Although this form could deliver the tension in statement, it was too iu from the original form. Therefore, it didn't last long, and its position got smaller because of the free verse that had western influence and was emerging in the times. In the middle of 1920, there was a movement of Sijo revival. It was lead by Choinamsun. He wrote poems and Sijo which were effected by western ideas in his early works. Although he worked with that, he took the lead in the movement of Sijo revival. He published the collection of Sijo $\ulcorner$Baekpalbunnwoi$\lrcorner$ that has one major theme-patriotic sentiment. He thought an ancient poem was a part of racial characteristics so that he expressed the main theme which represented the times and situations of his era. Modern Sijo is difficult. Sijo has to have modern and Korean verse characteristics at the same time. If it considers a modern aspect too much, it could not be distinguished from sijo and free verse. If it overly leans toward Sijo. it would seem to be too conservative which it then could be said to have no real charm of a poem. In spite of these problems, it is written constantly, because it has its own specialty. It has been focused on some works because they reflect awareness of modern times, the democratic idea, and realism. Overall, the authors of Modern Sijo express various themes by using different forms. The more what we can guess in this work, Sijo will exist permanently because of its flexibility. Furthermore, one special characteristic-flexibility of the korean verse will make it last forever and it will be a genre in Korean poetry.

  • PDF