• Title/Summary/Keyword: 관절의 모멘트

Search Result 89, Processing Time 0.024 seconds

A Study of Lower Extremities Joint Moment Pattern by Stance Types in Tennis Serve (테니스 서브 스탠스 유형별 하지관절 모멘트의 패턴 연구)

  • Kim, Sung-Sup;Kim, Eui-Hwan;Kim, Euy-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.41-48
    • /
    • 2008
  • The purpose of this study was to analyze the lower extremities joint moment pattern by two types of service motion in tennis pinpoint and platform stance. Seven skilled high school tennis players participated, and the kinematics were recorded by the Vicon motion analysis system. For the gathering and analysis of the data Workstation, Bodybuilder and polygon were used. joint moments and Ground Reaction Forces for the phases involved were analyzed with the following results. There was a different moment pattern for the lower extremities between the two serve motions. For the platform stance there was only a large dorsal flexion moment but for the pinpoint stance there were other large moments. The flexion and maximum moment of the lower extremities occurred at the point of change from back swing and to the forward swing motion. Therefore, this data provides evidence that there is a high risk of injury at this point.

A Statistical Analysis of Joint Moments Acting on Men Performing a Seated Dynamic Task (앉은 자세에서 동적 작업을 수행할 때 작용하는 관절 모멘트의 통계학적 해석)

  • Jung, Ho-Il;Son, Kwon
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.161-173
    • /
    • 1991
  • A statistical approach was carried out to analyze joint moments acting on the six subjects performing a right-handed seated task. The dynamic task analyzed consisted of moving a hand-held weight of lkg mass back and forth in front of a subject's chest at the shoulder level in an upright seated position. We used experimental data obtained in the Biomechanics Laboratory of the University of Michigan. Based on the acquired data from three trials by each subject, moments were calculated using a 3-dimensional biomechanical model at such articulations as wrist, elbow, shoulder, the third lumbar spine, hip, knee, and ankle joints. The linear correlation and the two way analysis of variance were applied to the calculated joint moments in order to investigate inter-subject and inter-trial varations. The results obtained showed that the largest magnitude and deviation of moment was found at the third lumbar spine, that any linear relationship could not be found between moment and its equivalents attempted in this study, and that the maximum value and deviation of moment acting on each joint were statistically the same for all three trials but those were statistically not the same for all six subjects.

  • PDF

Correlation between Lower Extremities Joint Moment and Joint Angle According to the Different Walking Speeds (보행 속도에 따른 하지 관절의 각도와 모멘트의 상관관계)

  • Shin, Seong-Hyoo;Lee, Hyo-Keun;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.75-83
    • /
    • 2008
  • The purpose of this study was to evaluate the correlation between joint moment and joint position angle according to the different walking speeds. According to the different walking speeds(1.5m/s, 1.8m/s, 2.1m/s), experiments were terminated by 8 male subjects. In conclusion, 1. The peak extensor moment of knee joint increased by increasing walking speed, however, walking speed didn't have an effect on peak flexor and abductor moment of knee joint. 2. The position angle of knee joint increased movement of flexion, but other position angles of knee joint didn't have difference when the peak extensor moment generated. 3. The peak joint moment of hip significantly increased in extension, flexion and abduction by increased walking speed. 4. The hip position angle showed more flexible at the hip peak flexor/extensor moment generated. 5. The co-ordination pattern between peak knee joint moment and knee position angle were mathematically modeled by using a least square method. We could get the high level value of R2. We expect to apply this results for evaluating the physical faculty of knee joint.

A Study on the Change of Gait Temporal Parameter and Ankle Joint Moment in Patients with Achilles Tendinitis (아킬레스 건염 환자의 보행 시 고관절, 슬관절 및 족관절 모멘트의 변화에 대한 연구)

  • Yu, Jae-Ho;Lee, Gyu-Chang;Lee, Dong-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5766-5772
    • /
    • 2011
  • This study was to investigate the change of gait temporal parameter and ankle joint moment between patients with achilles tendinitis and healthy people. Thus, the purpose of this study is to clarify biomechanical change of gait in patients with achilles tendinitis and to find risk factor for prevention of achilles tendinitis. We recruited 20 patients with an achilles tendinitis and 20 healthy people. While subjects shuttled 5 times on 13 m distance with comfortable pace, we examined gait function marker with three-dimensional gait analysis system. All subject outstepped center of forceplate during gait and calculated ankle joint moment using software. Obtained data was analyzed using SPSS 12.0 software. In results, we confirmed that patients with achilles tendinitis showed reduction of extension moment in early initial phase and reduction of flexion moment in mid-stance on hip joint. and reduction of flexion moment in early initial phase and reduction of extension moment in late phase on knee joint. And we identified that patients with achilles tendinitis showed reduction of dorsiflexion moment in early stance phase, maximal plantarflexion moment in mid stance phase, and dorsiflexion moment in late stance phase. Thus, there are biomechanical changes on gait in patients with achilles tendinitis compared to healthy people. And, in clinical settings, they should focus on changes of gait in patients with achilles tendinitis. Further study will be undertaken for the biomechanical changes of patietns with achilles tendinitis.

Correlation Between Joint Angular Displacement and Moment in the Human Foot (인체 족부관절의 각변위와 모멘트의 상관관계)

  • 김시열;신성휴;황지혜;최현기
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.209-215
    • /
    • 2003
  • The goal of this study was to investigate the relationship between kinematic and kinetic characteristics of foot joints resisting ground reaction force. Passive elastic joint moment and angular displacement were obtained from the experiment using 3 cameras and force plate. The relationship between joint angle and moment was mathematically modeled by using least square method. The ranges of motion of joints ranged from 5$^{\circ}$ to 7$^{\circ}$ except metatarsophalangeal joint. In the study, we presented simple mathematical models that could relate joint angle and plantar pressure. From this model, we can got the kinematic data of joints which is not available from conventional motion analysis. Furthermore, the model can be used not only for biomechanical model which simulates gait but also for clinical evaluation.

Kinetic comparative analysis of tennis backhand stroke for interdisciplinary convergence research (학제간 융합연구를 위한 테니스 백핸드 스트로크 동작의 운동역학적 비교 분석)

  • Cha, Jung-Hoon
    • Journal of Digital Convergence
    • /
    • v.13 no.7
    • /
    • pp.373-380
    • /
    • 2015
  • This study which was conducted on male tennis player on one hand(OH) & two hand(TH) backhand stroke and how both motion differed on low extremity movement with each feature analyzed in detail, the result as follow. The motion of TH based on resultant velocity, appeared to be a higher than OH, which was important variable in determining the ball speed. Contrary to TH where the player minimized the motion in the lower body and finalized a stroke through the turn of the trunk as if sticking the ball closed to the body, OH was carried out such that the player appeared to chase the ball. Whereas in OH, the knee joint extension moment was not found to be larger than TH, the opposite result came out for abduction moment and internal rotation moment. In the case of hip joint, consisted of extension, abduction and internal rotation moment, the outcome emerged to be greater for TH with conspicuous difference in abduction moment. Flection moment for TH overwhelmed in TH though both adduction and external rotation moment brought about similar outcome for both strokes.

Effects of Physical Characteristics Factors on Ankle Joint Injury during One Leg Drop Landing (외발 착지 시 신체적 특성 요인들이 발목 관절 상해에 미치는 영향)

  • Lee, Seong-Yeol;Lee, Hyo-Keun;Kwon, Moon-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.839-847
    • /
    • 2020
  • The purpose of this study was to analyze the effects of ankle flexibility, gender, and Q-angle on the ankle joint injury factors during one leg drop landing. For this study, 16 males(age: 20.19±1.78 years, mass: 69.54±10.12 kg, height: 173.22±4.43 cm) and 16 females(age: 21.05±1.53 years, mass: 61.75±6.97 kg, height: 159.34±4.56 cm) in their 20's majoring in physical education using the right foot as their dominant feet were selected as subjects. First, an independent t-test of joint motion and joint moment according to the experience of ankle injury was conducted to determine the effect of physical characteristics on ankle joint injury during one leg drop landing(α = .05). Second, the variable that showed a significant difference through t-test was set as the dependent variable, and the ankle flexibility, gender difference, and Q-angle were designated as independent variables to use Multiple Linear Regression(α =. 05). As a result of this study, it was found that the group that experienced an ankle joint injury was found to use a landing strategy and technique through adduction of the ankle joint and internal rotation of the knee joint, unlike the group without an injury. It was also confirmed that this movement increases the extension moment of the ankle joint and decreases the extension moment of the hip joint. In particular, it was found that the dorsi flexion flexibility of the ankle affects the ankle and knee landing strategy, and the gender difference affects the ankle extension moment. Therefore, it was confirmed that physical characteristics factors affecting ankle joint injuries during one leg drop landing.

The effect of whole body vibration on lower joints in vertical jump (전신진동운동이 수직점프 시 하지관절에 미치는 영향)

  • Yi, Jae-Hoon
    • Journal of Digital Convergence
    • /
    • v.14 no.6
    • /
    • pp.513-518
    • /
    • 2016
  • The Mechanisms of whole body vibration on the human body is not clearly presented despite of the research result and there is not enough research that shows the effects of vibration on the kinetic changes of the lower joint. Therefore, this study focuses on finding out which lower joint is related with kinetic vertical jump ability. Five male and five female who didn't have orthopedic history were selected as the subjects. The subjects carried out three squat jumps before and after 5minutes of 30Hz whole body vibration. We have utilized a 3D motion analysis system to analyze the kinetic changes of the lower joint in the vertical jump. The height of subjects squat jump was improved after whole body vibration treatment. Also, the lower joint moment and power increased. However, there were no statistically significant changes in GRF, hip joint moment and power after the whole body vibration proved to have positive effect on the ankle and knee joints but showed negative effect on the hip joint.

A Kinetic Analysis of the Lower Extremity during Walking on Three Different Stair width in Healthy Adults (성인 계단보행 시 계단 너비에 따른 하지의 운동역학적 분석)

  • Jun, Hyun-Min;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.161-169
    • /
    • 2008
  • The purpose of this study was to investigate kinetic variables of the lower extremity during walking on three different stair widths in healthy adults. Ten healthy college-aged adults($23.5{\pm}3.5$) recruited for this study. Each stairs with the same height and length(l8cm and 90cm) under the Korean Constructional Law but three different widths(26cm, 31cm and 36cm) were conducted for this study. One force plate(9286AA, Kistler Co.) was put on third stairs. One-way ANOVA was performed to find the stair width effects during stair walking and the following findings ware obtained. There was significantly decreased in ankle resultant joint moment at Pull-Up phase(p<.05) and, significantly increased in knee extension moment during mid-stance phase as stair width increase(p<.05), but there was no significance in ankle resultant joint moment was found at Forward Continuance Phase in Ascending Stair Walking and There was significantly increased in ankle resultant joint moment as stair width increase during mid-stance phase(p<.05) and no significance in knee and hip resultant moments among the stair width in descending stair walking.

Development of a three-dimensional motion analysis software for the physical usability test of product (제품의 물리적 사용성 평가를 위한 3차원 동작분석 S/W의 개발)

  • 박재희;강신길
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.04a
    • /
    • pp.25-29
    • /
    • 1998
  • 제품이나 환경에 대한 인간의 반응은 생리적 변화로 나타나기도 하지만, 동작 반응(motor-response)으로 나타나기도 한다. 특히 제품으 감성적 설계를 위해서는 가장 기본적으로 이를 조작하는 인체의 자세와 동작에 대한 분석을 필요로 한다. 본 연구는 이를 위해 3차원 동작측정시스템과 힘판(forceplatform)에서 얻어진 원시 데이터로부터 인체의 자세와 동작을 평가하는 소프트웨어를 개발하는 것을 목표로 하였다. 개발된 소프트웨어는 누락 (mission)된 데이터의 보간(interpolation), 동작 애니메이션, 관절의 각도계산, 관절에서의 모멘트(momint)계산 기능등을 포함하고 있다. 본 논문은 진공청소기를 사용하는 동작을 기준으로, 이러한 S/W 개발 과정에 사용한 인체 모델과 각 관절의 모멘트 계산 방법에 대해 주로 기술 하였다. 3차원 동작측정시스템과 본 소프트웨어를 이용하면, 진공청소기, 냉장고 등의 제품을 사용할 때의 사용자의 작업 자세와 부하 평가가 가능해져 감성공학적 제품 개발에 활용할 수 있을 것이다.

  • PDF