• Title/Summary/Keyword: 관절방향각

Search Result 74, Processing Time 0.025 seconds

The usage of convergency technology for ROGA algorithm application on step walking of biped robot (이족 로봇의 계단 보행에서 Real-Coded Genetic Algorithm 의 융합 기술의 사용)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.175-182
    • /
    • 2020
  • The calculation of the optimal trajectory of the stepped top-down robot was made using a genetic algorithm and a computational torque controller. First, the total energy efficiency was minimized using the Red-Cold Generic Algorithm (RCGA) consisting of reproductive, cross, and mutation. The reproducibility condition related to the position assembly of the start and end of the stride and the joints, angles, and angular velocities are linear constraints. Next, the unequal constraint accompanies the condition for preventing the collision of the swing leg at the corner with the outer surface of the stairs, the condition of the knee joint for preventing kinematic peculiarity, and the condition of no moment in safety in the traveling direction. Finally, the angular trajectory of each joint is defined by fourth-order polynomial whose coefficient is to approximate chromosomes. This is to approximate walking. In this study, the energy efficiency of the optimal trajectory was analyzed by computer simulation through a biped robot with seven degrees of freedom composed of seven links.

The Analysis of the Effect of .Wind Load on the Structural Stability of an Articulation type Container Crane (풍하중이 관절형 붐을 가진 컨테이너 크레인의 구조 안정성에 미치는 영향 분석)

  • Lee Jung-Myung;Lee Seong-Wook;Han Dong-Seop;Han Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.235-240
    • /
    • 2005
  • Articulation type container cranes are the boom forms an inverted L shape when raise. The inner boom section is nearly vertical when raise and the outer boom section is nearly horizontal. Articulation type container cranes were developed as a lower height crane to meet aircraft clearance requirements. Because the height of an Articulation type container crane is about 70m, the crane is subjected to the effect of Wind load. Therefore, the problem on the effect of Wind load is receiving carefully study. The researches for the effect of wind load on the structural stability of a conventional container crane are conducted. In this study, we carried out the investigation for an articulation type container crane. When a wind load is applied to a container crane, we analyzed the reaction force distribution at each supporting point of a crane with respect to a wind load direction and the effect of the change of the machinery house location on the structural stability rf a crane by carrying out Finite Element Analysis.

  • PDF

Design of an Arm Gesture Recognition System Using Feature Transformation and Hidden Markov Models (특징 변환과 은닉 마코프 모델을 이용한 팔 제스처 인식 시스템의 설계)

  • Heo, Se-Kyeong;Shin, Ye-Seul;Kim, Hye-Suk;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.10
    • /
    • pp.723-730
    • /
    • 2013
  • This paper presents the design of an arm gesture recognition system using Kinect sensor. A variety of methods have been proposed for gesture recognition, ranging from the use of Dynamic Time Warping(DTW) to Hidden Markov Models(HMM). Our system learns a unique HMM corresponding to each arm gesture from a set of sequential skeleton data. Whenever the same gesture is performed, the trajectory of each joint captured by Kinect sensor may much differ from the previous, depending on the length and/or the orientation of the subject's arm. In order to obtain the robust performance independent of these conditions, the proposed system executes the feature transformation, in which the feature vectors of joint positions are transformed into those of angles between joints. To improve the computational efficiency for learning and using HMMs, our system also performs the k-means clustering to get one-dimensional integer sequences as inputs for discrete HMMs from high-dimensional real-number observation vectors. The dimension reduction and discretization can help our system use HMMs efficiently to recognize gestures in real-time environments. Finally, we demonstrate the recognition performance of our system through some experiments using two different datasets.

A Study on the Usefulness of Styrofoam Wedge for Wrist True PA and Lateral examination (WRIST TRUE PA와 LATERAL 검사 시 경사보조도구의 유용성 분석)

  • Jeon, Sang-Hyun;Kim, Gab-Jung;Kim, Nak-Sang;Seo, Sun-Youl;Choi, Seon-Wook;Jeon, Min-Cheol
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.53-60
    • /
    • 2020
  • The purpose of this paper is to evaluate the image of the Styrofoam Wedge that can minimize the position change by supporting the wrist during the True PA and lateral examination of the wrist. In 50 people, the gap between the distal radius joint facet and the wrist bone was measured after the wrist True PA and lateral images were obtained using a general examination(vertical), tube angle(vertical:10°, lateral:20°) and Styrofoam Wedge(vertical). When joint spacing was measured in the True PA and lateral images of the wrist, general examination(5.54mm, 9.42mm), tube angle(2.05mm, 5.07mm) and Styrofoam Wedge(1.79mm, 5.46mm) were shown to be small. The smaller the joint spacing, the easier it is to observe that is open. Therefore, True PA and lateral imaging of the wrist Styrofoam Wedge can reduce the distortion of the image and thus acquire images of high diagnostic value. In addition, it may be possible to reduce the deviation caused by the change of patient's position during re-projection.

Kinematic Analysis on the Mogul Short Turn Motion in Interski (인터스키 부정지 숏턴 동작의 운동학적 분석)

  • Joo, Hyun-Sik;Park, Jong-Hoon;Lee, Gye-San;Kim, Won-Kyoung;Park, Jong-Chul;Back, Jin-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.67-76
    • /
    • 2008
  • The purpose of this study was to analyze differences in kinematic variables for mogul short turn motion between superior and inferior group, so that it can explore more effective mogul short turn motions. To meet the goals, this study selected total 10 ski players who would participate in mogul short turn event of the National Technical Ski Championship 2007, so that it could analyze kinematic variables by way of 3D motion analysis using DLT method. As a result, this study came to the following conclusions; For total and phase-specific duration, it was found that superior group took shorter time than inferior group. Superior group's Center of Mass was stands for more high value in up-down movement skill than inferior group. However right-left movement scale was less than them. In this reason, superior group was made a straight descent at the same time made a fast front-rear velocity. In the part of up-down movement velocity show that move slowly in the drop-in phase while increased in the bump-up phase. It is show that superior group was less tinny than inferior group include joint angle and knee joint angle. However leaning angle of trunk and the body inclination angle were more high figured than inferior group. Leaning angle of lower limbs also showed high figure at the center mogul. Lastly, In the part of body torsion angle show that superior group was high figure direction of right turn in the drop-in phase while in bump-up phase, made a high figure direction of left turn.

Application of Incidence Angle on Lumbar Spine Anteroposterior General Radiography Image according to Measured Intervertebral Disc Angle (방사선 일반 정면검사에서 허리뼈 추간판 계측 값에 따른 입사각 적용)

  • Moon, Seul-Ji-A;Kim, Gyeong-Rip;Cho, Hee-Jung;Sung, Soon-Ki;Kwak, Jong-Hyeok
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.6
    • /
    • pp.471-480
    • /
    • 2019
  • L-spine 3~4, L-spine 4~5, and L-spine 5~Sacrum 1 intervertebral disc(IVD) angle according to gender, age, body mass index(BMI), lumbar lordosis angle(LLA) were compared and analyzed. The anteriorposterior incidence angle of L-spine 3 ~ 4, L-spine 4 ~ 5 and L-spine 5~Sacrum 1 in body mass index were 5.66, 13.23 and 29.13 degrees in the head direction and L-spine 3 4, L-spine 4 ~ 5, L-spine 5~Sacrum 1 had 6.32 degrees, 16.09 degrees and 35.36 degrees in the head direction. The distortion area ratio comparison was performed with the phantom image using the proposed incidence angle. There was a significant difference in L-spine 4~5 and L-spine 5~Sacrum 1 IVD angle relative to body mass index and LLA(p<0.05), IVD angle and LLA were positively correlated(p<0.05).As a result of evaluating the usefulness of the image by applying the incidence angles of the disc angles according to the phantom angle of deviation to the head direction as 11 degrees for L4 and 26 degrees for L5, the distortion ratio area decreased from 14.90% to 12.11% in L4, And from 15.25% to 13.72% in L5. In anteriorposterior image of the Lumbar spine applying the incidence angle according to the measured disc angle, it is possible to reduce the distortion to purpose L4, L5. And improved the quality and diagnostic information of the target site.

Human Action Recognition by Inference of Stochastic Regular Grammars (확률적 정규 문법 추론법에 의한 사람 몸동작 인식)

  • Cho, Kyung-Eun;Cho, Hyung-Je
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.3
    • /
    • pp.248-259
    • /
    • 2001
  • This paper proposes a human action recognition scheme to recognize nonverbal human communications automatically. Based on the principle that a human body action can be defined as a combination of multiple articulation movements, we use the method of inferencing stochastic grammars to understand each human actions. We measure and quantize each human action in 3D world-coordinate, and make two sets of 4-chain-code for xy and zy projection plane. Based on the fact that the neighboring information among articulations is an essential element to distinguish actions, we designed a new stochastic inference procedure to apply the neighboring information of hands. Our proposed scheme shows better recognition rate than that of other general stochastic inference procedures. ures.

  • PDF

An Experimental Study on Flapping Motion of Forward Flight Condition used to Articulated Hub Rotor (관절형 허브 로터를 이용한 전진비행조건에서의 플래핑 운동에 대한 실험적 연구)

  • Ryi, Jae-Ha;Back, Dong-Min;Rhee, Wook;Choi, Jong-Soo;Song, Keun Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.261-267
    • /
    • 2013
  • In this paper, wind tunnel test and analytical prediction are compared for result of flapping motion in helicopter forward flight condition. Tests were performed at low speed wind tunnel at Chungnam National University, test section of wind tunnel has 1.8 by 1.8 meter open-jet test section area. According to the results of measured data for aerodynamic performance of model rotor in forward flight. It has to observed the difference of analytical and measured results of power coefficient for fixed thrust coefficient. And calculated and measured data of helicopter rotor flapping angles in forward flight are compared for a model rotor in a wind tunnel. A test was conducted to verify the measured data of coning and lateral/longitudinal flapping angle with predicted values.

Hand Gesture Recognition from Kinect Sensor Data (키넥트 센서 데이터를 이용한 손 제스처 인식)

  • Cho, Sun-Young;Byun, Hye-Ran;Lee, Hee-Kyung;Cha, Ji-Hun
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.447-458
    • /
    • 2012
  • We present a method to recognize hand gestures using skeletal joint data obtained from Microsoft's Kinect sensor. We propose a combination feature of multi-angle histograms robust to orientation variations to represent the observation sequence of skeletons. The proposed feature efficiently represents the orientation variations of gestures that can be occurred according to person or environment by combining the multiple angle histograms with various angular-quantization levels. The gesture represented as combination of multi-angle histograms and random decision forest classifier improve the recognition performance. We conduct the experiments in hand gesture dataset obtained from a kinect sensor and show that our method outperforms the other methods by comparing the recognition performance.

Evaluation of Distortion in Measuring the Stability of Distal Radio-ulnar Joint in Wrist PA-Grip View (Wrist PA-grip view에서 먼쪽노자관절의 안정성 정도 측정 시 왜곡도 평가)

  • Shim, Jina;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.3
    • /
    • pp.321-327
    • /
    • 2021
  • Wrist PA-grip view is used to diagnose triangular fibrocartilage complex (TFCC) tear because it can easily diagnose damage to the surrounding wrist ligaments. However, despite advances in radiology equipment, distortion of images due to geometric elements still has many limitations. In this paper, we propose a method that can minimize the distortions of images by analyzing the distortions occurring in the wrist PA-grip view. A source of image distance (SID) were set at 130 cm and 150 cm for comparison with 110 cm. Depending on the SID, the phantom of wrist was moved at 0, 2, 4, 6, 8, and 10 cm in the X-axis and Y-axis directions, respectively. For quantitative evaluation, the difference of distance between the radius and ulna was measured in picture archiving and communication system (PACS) system. As a qualitative evaluation, survey was conducted among 20 radiologic technologists who examined the Wrist PA-grip view. The Kruskal Wallis test was performed to compare the distortion according to the phantom movement in the X-axis and Y-axis directions based on the SID, and the Tukey test was performed as a post-test. In the quantitative evaluation results, the measured values obtained in the X-axis was not significantly different in all groups (p>0.05). The measured values obtained in the Y-axis was significantly different in the most groups (p<0.05). Therefore, to reduce distortion while maintaining image quality, we recommend what examine the SID at 150 cm than 110 cm.