• Title/Summary/Keyword: 관입암

Search Result 227, Processing Time 0.029 seconds

Time-relationship between Deformation and Growth of Metamorphic Minerals around the Shinbo Mine, Korea: the Relative Mineralization Time of Uranium Mineralized Zone (신보광산 주변지역에서 변성광물의 성장과 변형작용 사이의 상대적인 시간관계: 우라늄 광화대의 상대적인 광화시기)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.385-396
    • /
    • 2012
  • The geochemical high-grade uranium anormal zone has been reported in the Shinbo mine and its eastern areas, Jinan-gun, Jeollabuk-do located in the southwestern part of Ogcheon metamorphic zone, Korea. In this paper is reported the time-relationship between deformation and growth of metamorphic minerals in the eastern area of Shinbo mine, which consists of the Precambrian metasedimentary rocks (quartzite, metapelite, metapsammite) and the age-unknown pegmatite and Cretaceous porphyry which intrude them, and is considered the relative mineralization time on the basis of the previous research's result. The D1 deformation formed the straight-type Si internal foliation which is defined mainly as the arrangement of elongate quartz, biotite, opaque mineral in andalusite porphyroblast. The D2 deformation, which is defined by the microfolding of Si foliation, formed S2 crenulation cleavage. It can be divided into two sub-phases, early crenulation and late crenulation. The former occurs as the curvetype Si foliation in the mantle part of andalusite. The latter occurs as S1-2 composite foliation which warps around the andalusite. The andalusite porphyroblast began to grow under non-deformation condition after the formation of S1 foliation which corresponds to the straight-type Si foliation. It continued to grow before the late crenulation phase. The age-unknown pegmatite intruded after the D2 deformation and grew the fibrous sillimanite which random masks the S1-2 composite foliation. The D3 deformation formed F3 fold which folded the S1-2 composite foliation, D2 crenulation, fibrous sillimanite. It means that the intrusion of pegmatite related to the growth of the fibrous sillimanite took place during the inter-tectonic phase of D2 and D3 deformations. The retrograde metamorphism is recognized by the chloritization of biotite and two-way cleavage lamellae which is parallel to the S1-2 composite foliation and the F3 fold axial surface in the andalusite porphyroblast. It occurred during the D2 late crenulation phase and D3 deformation. In considering of the previous research's result inferring the most likely candidate for the uranium source rock as pegamatite, it indicates that the age-unknown pegmatite intruded during the inter-tectonic phase of D2 and D3 deformations, i.e. during the retrograde metamorphism related to the uplifting of crust, and formed the uranium ore zone around the Shinbo mine.

Analysis of the Geological Structure of the Hwasan Caldera Using Potential Data (포텐셜 자료해석을 통한 화산칼데라 구조 해석)

  • Park, Gye-Soon;Yoo, Hee-Young;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo;Eom, Joo-Young;Kim, Dong-O;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • A geophysical mapping was performed for Hwasan caldera which is located in Euisung Sub-basin of the southeastern part of the Korean Peninsula. In order to overcome the limitation of the previous studies, remote sensing technic was used and dense potential data were obtained and analyzed. First, we analyzed geological lineament for target area using geological map, digital elevation model (DEM) data and satellite imagery. The results were greatly consistent with the previous studies, and showed that N-S and NW-SE direction are the most dominant one in target area. Second, based on the lineament analysis, highly dense gravity data were acquired in Euisung Sub-basin and an integrated interpretation considering air-born magnetic data was made to investigate the regional structure of the target area. The results of power spectrum analysis for the acquired potential data revealed that the subsurface of Euisung Sub-basin have two density discontinuities at about 1 km and 3-5 km depth. A 1 km depth discontinuity is thought as the depth of pyroclastic sedimentary rocks or igneous rocks which were intruded at the ring vent of Hwasan caldera, while a 3-5 km depth discontinuity seems to be associated with the depth of the basin basement. In addition, three-dimensional gravity inversion for the total area of Euisung Sub-basin was carried out, and the inversion results indicated two followings; 1) Cretaceous Palgongsan granite and Bulguksa intrusion rocks, which are located in southeastern part and northeastern part of Euisung Sub-basin, show two major low density anomalies, 2) pyroclastic rocks around Hwasan caldera also have lower density when compared with those of neighborhood regions and are extended to 1.5 km depth. However, a poor vertical resolution of potential survey makes it difficult to accurately delineate the detailed structure caldera which has a vertically developed characteristic in general. To overcome this limitation, integrated analysis was carried out using the magnetotelluric data on the corresponding area with potential data and we could obtain more reasonable geologic structure.

Occurrence and Deformation of Fe-Ti ores from the Proterozoic Hadong Anorthosites, Korea (원생대 하동회장암체 내 철-티탄 광체의 산상과 변형)

  • Jung, Jae-Sung;Kim, Jong-Sun;Cho, Hyeong-Seong;Song, Cheol-Woo;Son, Moon;Ryoo, Chung-Ryul;Chi, Sei-Jeong;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.31-49
    • /
    • 2010
  • Nearly NS-trending Fe-Ti ore bodies intermittently occur in the Hadong anorthosites, south Korea, irrespective of the rock types of the anorthosites. In order to determine their occurrence mode and deformation history, we collected the features of occurrence and geological structures in the field, petrographic features using thin sections of the principal constituent rocks, and geochemical data of ilmenites in the ore body using electron probe microanalysis. Fe-Ti ore bodies examined in this study are divided into two types: dike- and lamina-types. It is steadily supported that the dike-type has intruded into the anorthositic rocks after their emplacement and solidification. And the laminar-type is probably a result of the mylonitization and transposition of the dike-type ore bodies parallel to the shear planes, due to later strong dextral ductile shearing. In the meantime, the Fe-Ti ore bodies have experienced the stronger dextral shearing in the more northern part of the study area, i.e. Cheongryong-ri, Wolhoeng-ri, Jonghwa-ri, and Jayangri and Baekun-ri in ascending order of its strength, together with the less content of $TiO_2$. All ilmenites of the ore bodies have very similar chemical composition, as pure ilmenite of 52~55 wt.% in $TiO_2$ content, irrespective of the occurrence mode and degree of later ductile shearing of the ore bodies. And they didn't experience to exsolve into magnetite. The structural data indicate that the Hadong anorthosites have deformed by NNE-trending folding, intrusion of the Fe-Ti ore bodies, NNW~NNE-trending dextral ductile shearing, NW~NNW-trending sinistral semi-brittle shearing, and intrusion of NNE~NE-trending mafic dykes in descending order of chronology after the formation of foliation of the anorthositic rocks. The foliation is interpreted as a result of the accumulation of crystals that settle out from the magma by the action of gravity.

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.

Petrochemistry on igneous rocks in the Mt. Mudeung area (무등산 지역에 분포하는 화성암류의 암석화학)

  • 김용준;박재봉;박병규
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.214-233
    • /
    • 2002
  • Igneous rocks of Mt. Mudeung area are composed of Pre-Cambrian granite gneiss, Triassic hornblende-biotite granodiorite, Jurassic quartz diorite and Cretaceous igneous rocks. The Cretaceous igneous rocks consist of volcanic rocks (Hwasun andesite, Mudeung-san dacite and Dogok rhyolite) and granitic rocks (micrograpic granite and quartz porphyry). Major elements of the Cretaceous igneous rocks represent calc-alkaline rock series and correspond to a series of differentiated products from cogenetic magma. Igneous activity of Mt. Mudeung area started from volcanic activity, and continued to intrusive activity at end of the Cretaceous. In chondrite normalized REE pattern, most of igneous rocks of Mt. Mudeung area show similar pattern of Eu (-) anomaly. This is a characteristic feature of granite in continental margin by tectonic movement. Variation diagrams of total REE vs. La/Yb V vs. SiO$_2$ indicate differentiation and magnetite fractionation sequential trend of Hwasun andesite longrightarrowMudeungsan dacitelongrightarrowquartz porphyry. In mineral composition of these igneous rocks in mt. Mudeung area, composition of plagioclase and biotite coincidence with variation of whole rock composition, and emplacement and consolidation of magma is about 15 km (about 4.9 Kbar) in Jurassic quartz diorite and 2.0~3.2 km (0.6~1.0 Kbar) in Triassic hornblende-biotite granodiorite used by amphibolite geobarometer. Parental magma type of these granitic rocks of nt. Mudeung area corresponds to VAG field in Pearce diagram, and I-type in ACF diagram.

Occurrence and Genesis of Amphiboles in Hornblende Gabbro in Guwoonri, Hwacheon and in Otanri, Chuncheon (화천 구운리와 춘천 오탄리 일대에 분포하는 각섬석 반려암체내에 존재하는 각섬석류의 산출양상 및 생성작용)

  • Kim, Guan-Young;Park, Young-Rok
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.79-91
    • /
    • 2009
  • Jurassic hornblende gabbo intrusives are distributed in Otanri, Chuncheon, and in Guwoonri, Hwacheon located in the northern part of Gyeonggi Massif. The intrusives composed mainly of amphiboles and plagioclase can be divided into two distinct rocks depending on the shape of amphiboles: (i) subspherical amphibole gabbro which has subspherical amphibole phenocryst as a major mafic phase(Sag); (ii) prismatic amphibole gabbro which has prismatic amphiboles as a principal mafic mineral(Pag). Subspherical amphiboles in Sag have higher Cr content and higher Mg($Mg+Fe^{2+}$) ratio relative to the prismatic amphiboles in Pag. This is indicative of conversion of pyroxene into amphibole with pyroxene pseudomorph. Oxygen isotopic results of plagioclase and amphibole separated from the hornblende gabbro suggest that theses minerals have experienced oxygen isotopic exchange with relatively heavy-$^{18}O$fluid for a long period, and magmatic fluid has been involved in the formation of subspherical amphiboles. Amphiboles in hornblende gabbro are composed of distinct species of pargasite, magnesiohornblende, actinolite, which formed at different stages.

Geochemistry, Isotope Properties and U-Pb Sphene Age of the Jeongeup Foliated Granite, Korea (정읍엽리상화강암의 지구화학 및 동위원소 특성과 U-Pb 스핀 연대)

  • Jeong, Youn-Joong;Cheong, Chang-Sik;Park, Cheon-Young;Shin, In-Hyun
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.539-550
    • /
    • 2008
  • In this paper, we investigate the geochemical and isotope properties of the Jeongeup foliated granite (hereafter, the JFG) in the Jeongeup area, aiming at establishing the movement age of the Honam shear zone by U-Pb sphene geochronology. In the AMF diagram, the JFG corresponds to the calc alkalic rock series, and belongs to the magnesia region in the diagram of silica versus $FeO^{total}/(FeO^{total}+MgO)$. Additionally, in the Rb-Ba-Sr diagram, it is classified as granodiorite and anomalous granite with distinctive negative Eu-anomaly in the REE patterns. According to the silica and trace element contents, the JFG falls on the type VAG+syn-COLG, which implies that this was formed under the circumstance of compressional continental margin or volcanic arc. $^{143}Nd/^{144}Nd$ isotope ratios range from 0.511495 to 0.511783 and $T_{DM}$ are calculated to be about $1.68{\sim}2.36Ga$. U-Pb sphene ages of the JFG are $172.9{\pm}1.7Ma$ and $170.7{\pm}2.8Ma$, based on $^{238}U-^{206}Pb$ and $^{235}U-^{207}Pb$ ages, respectively. Presumably, the dextral ductile shearing in the Jeongeup area has occurred after 173 Ma.

Geochemical Studies on the Petrogenesis of Jurassic Peraluminaous Granitic Rocks in the area of Gwangdeoksan in the Northern Gyeonggi Massif (경기육괴 북부 광덕산 일대에 분포하는 쥐라기 고알루미나 화강암질암의 성인에 대한 지화학적 연구)

  • Han, Chung Hee;Jeon, Hye Su;Park, Young-Rok
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.325-337
    • /
    • 2020
  • The Jurassic granitic rocks in the area of Gwangdeoksan located along the boundary between Hwacheon and Cherwon in northern Gyeonggi Massif consist of two-mica granite, garnet-bearing two-mica granite, mica-granite, and porphyritic biotite granite. These granitic rocks are calc-alkaline series and plotted in peraluminious domain in A/CNK vs. A/NK diagram. Petrographical and geochemical data indicate that the porphyritic biotite granite which intruded at the last period originated from distinct parental magma from two-mica granite, garnet-bearing two-mica granite, and mica-granite. On the basis of Rb/Sr vs. Rb/Ba diagram and Al2O3/TiO2 vs. CaO/Na2O, it is inferred the porphyritic biotite granite originated from protolith with less pelitic composition than 3 other granitic rocks. The enriched values of lithophile elements of Cs, Rb, and Ba and negative trough of Nb, P, Ti on spider diagram suggest that the peraluminous Jurassic granitic rocks in Gwangdeoksan area formed in subduction tectonic environment. Whole-rock zircon saturation thermometer indicates that the granitic rocks in the study area were melted at 692-795℃.

Emplacement Depth of Cretaceous Granites in Kyeongsang Basin, E Korea (경상분지내 백악기 화강암류의 정치 깊이에 관한 연구)

  • Ko, Jeong-Seon;Yun, Sung-Hyo;Ahn, Ji-Young;Kim, Hyang-Soo;Choi, You-Jong
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.59-66
    • /
    • 2000
  • In Kyeongsang basin, there were very dynamic magmatic activities, resulting to form volcanic and plutonic rocks. A plutonic recycle appeared in this region. Presumption of the pressure for hornblende-bearing granitic rock among the plutonic rocks, can support important informations for the emplacement depth of Cretaceous Bulgugsa granites in Kyeongsang basin. $Al^T$(Al total) contents of hornblende is related to the pressure, oxygen fugacity, and compositions of other minerals having the solid solution. So we apply the $Al^T$ content of hornblende to several empirical and experimental geobarometer systems to presume the pressure and to determine the emplacement depth of Cretaceous Bulgugsa granites in Kyeongsang basin from the inferred pressure. With the result that we applied the $Al^T$ contents of hornblende to the various geobarometers, there was a positive relationship between the pressure and $Al^T$. The minimum pressure value ranges from 0.73 to 1.70kbar in Kyeongju and the maximum value from 2.02 to 3.16kbar in Kimhae. And then the tectonic setting in Kyeongsang basin has no relation to the emplacement depth of Cretaceous granites and means variations with the movement of vertical component in each area. As we suppose that the density of earth's crust is $2.8g/cm^3$, the average values of the emplacement depth ranges in each area range from 2.6 to 11.4km. These data confirm the previous idea about the emplacement depth of Cretaceous granites in Kyeongsang basin, and these geobarometers using the $Al^T$ contents of hornblende is available though they have much limits. Therefore Cretaceous Bulgugsa granites in Kyeongsang basin was the shallow depth intrusive rut and the exposed granites was the shallow depth crust.

  • PDF

Mineralogy and Geochemistry of Carbonate Minerals from the Olon Ovoot Gold Mine, Mongolia (몽골 Olon Ovoot 금 광산에서 산출되는 탄산염광물의 산출상태 및 화학조성)

  • Yoo, Bong Chul;Tungalag, Naidansuren;Sereenen, Jargalen;Heo, Chul-Ho;Ko, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.181-191
    • /
    • 2014
  • Olon Ovoot gold mine, Mongolia, is located in the Omnogobi province which is south 500 km from Ulaanbaatar. The mine area consists of the Devonian Bot-Uul khudag formation, the Upper Devonian intrusions, and the Upper Devonian or the Early Jurassic quartz veins. The quartz veins contain from 1 to 32 g/t gold with an average of 5 g/t gold. The quartz veins vary from 0.2 m to 25 m and are concordant or discordant with foliation of the green-schist. The mineralogy of the quartz veins is simple and consists of mainly of white massive quartz with partly transparent quartz in cavity. Quartz, sericite, chlorite, pyrite and carbonates(ankerite, dolomite and siderite) were observed in the alteration zone. Carbonate minerals occur as disseminated, coarse or fine grains with quartz, sericite, chlorite and pyrite near vein margin or within wall-rock xenoliths in quartz vein. Ankerite is present as later dark grey ankerite(13.51 to 16.89 wt.% FeO) and early white grey ankerite(16.67 to 19.90 wt.% FeO). The FeO contents of early ankerite are higher than those of later ankerite. Dolomite contains from 3.89 to 10.44 wt.% FeO and from 0.10 to 0.47 wt.% MnO. Dolomite is present as dark grey dolomite(4.06 to 6.87 wt.% FeO), light white grey dolomite(6.74 to 7.58 wt.% FeO) and grey white dolomite(7.33 to 10.44 wt.% FeO). The FeO contents of white grey dolomite are higher than those of dark grey dolomite. Siderite contains from 34.25 to 48.66 wt.% FeO, from 6.79 to 14.38 wt.% MgO, from 0.06 to 0.26 wt.% MnO and from 2.08 to 8.08 wt.% CaO.