• Title/Summary/Keyword: 관수온도

Search Result 75, Processing Time 0.03 seconds

Analysis of Indoor Thermal Environment and Cooling Effects by Ventilation Condition, and Spray irrigation or Nonspray of Single Span Plastic Greenhouses (환기조건 및 관수에 따른 단동 플라스틱 하우스의 냉방효과와 열환경 분석)

  • 허종철;임종환;서효덕;최동호
    • Journal of Bio-Environment Control
    • /
    • v.9 no.1
    • /
    • pp.27-39
    • /
    • 2000
  • In this study, we quantitatively compare the cooling effects of single span plastic greenhouses by opening or shutting of toot and side vents, and operation of fan or sprinkler. With those variables, we simultaneously made experiments at 4 greenhouses under equivalent conditions. By the experiments, the shutting of roof and side vents caused the high temperature difference of indoor and outdoor which the crops cannot be cultivated. However, the opening of the windows effectively reduced the indoor temperature and showed uniform temperature distribution in the greenhouses. The sprinkler abruptly reduced the indoor temperature, and showed excellent cooling effects. Finally, this paper provides the fundamental data for environmental control in greenhouses.

  • PDF

Study on the factors affecting asparagine content in soy-sprout (콩나물의 asparagine 함량에 미치는 요인 구명)

  • Jeong, Yeon-Shin;Shon, Tea Ho;Dhakal, Krishna Hari;Lee, Jeong-Dong;Hwang, Young-Hyun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.26
    • /
    • pp.71-79
    • /
    • 2008
  • It is known that the content of asparagine, an excellent detoxifying substance of alcohols in human body, is the highest in the roots of soy-sprout. At the same time, it is inferred that soy-sprouts producing more roots are better for detoxifying. In this experiment, the effects of room temperatures on number of watering per day, and duration of soy-sprout culture were carefully investigated. Some of the results obtained are as follows; 1. The yield rate of soy-sprouts for Agakong and Pungsannamulkong was continuously increased up to 9 days. It was higher in room temperature of $30^{\circ}C$ than in $20^{\circ}C$ and was the highest at 8th day of culture with 5 times of watering per day. 2. The asparagine content in soy-sprouts of Agakong and Pungsannamulkong was the highest in cotyledon and the lowest in roots. This rate was higher in the room temperature of $20^{\circ}C$ than in $30^{\circ}C$. 3. The highest asparagine content of soy-sprout of Agakong was 18.9%, obtained in the room temperature of $30^{\circ}C$, cultivated for 8 days with 5 times of watering per day. 4. The highest asparagine content of Pungsannamulkong was 18.8%, obtained in hypocotyl cultivated in the room temperature of $30^{\circ}C$ for 8 days with the number of 2 times watering per day. 5. When an cultivation apparatus of 5 liters volume was used, the optimum seed amount for the highest yield rate was 300g for Agakong and 500g for Pungsannamulkong. At the same time, the number of lateral roots showed increasing tendency with more amounts of soybean seeds used.

  • PDF

Effects of Soil Moisture Content according to Irrigation Methods in Culture on Storability of Cucumber(Cucumis sativus L.) Fruit (관수방법에 따른 토양내 수분함량의 차이가 수확후 오이의 저장에 미치는 영향)

  • 박권우;강호민;장매희;권영삼
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.74-79
    • /
    • 1995
  • This study was made to investigate the effects of soil moisture content according to irrigation methods on the storability and quality of cucumber. The fresh weight loss of cucumber fruit harvested in drip irrigation plot was more than that in conventional irrigation plot at both 13$^{\circ}C$ and 24$^{\circ}C$ storage temperature. Dry weight ratio decreased during storage, and was higher in conventional irrigation plot than drip irrigation plot both 13$^{\circ}C$ and 241 storage. The decrease of dry weight ratio was higher at 24$^{\circ}C$ than 13$^{\circ}C$. Vitamin C was not influenced by soil moisture content, but decreased during storage at 13$^{\circ}C$ and 24$^{\circ}C$ The decrease of vitamin C at 24$^{\circ}C$ in 8 days after storage was twice as much at 13$^{\circ}C$. Firmness was measured differently in two parts of cucumber ; fruit stalk and blossom part. The firmness of fruit stalk part was higher than that of blossom part. This phenomena was observed continuously at until final day at 13$^{\circ}C$ and 24$^{\circ}C$ storage. But the difference of firmness was not showed in soil moisture content. Vitamin C, firmness and other quality characteristics were not influenced by soil moisture content during cultivation. The different soil moisture content according to irrigation methods did not affect the storability and quality of cucumber.

  • PDF

Effects of Temperature and Irrigation Intervals on Photosynthesis, Growth and Growth Analysis of Pot-grown Cucumber Seedlings (온도와 관수 주기가 오이 포트 묘의 광합성, 생육 및 생장 해석에 미치는 영향)

  • Jin Hee An;Eun Yong Choi;Yong Beom Lee;Ki Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.148-156
    • /
    • 2023
  • This study was conducted in an indoor cultivation room and chamber where environmental control is possible to investigate the effect of temperature and irrigation interval on photosynthesis, growth and growth analysis of potted seedling cucumber. The light intensity (70 W·m-2) and humidity (65%) were set to be the same. The experimental treatments were six combinations of three different temperatures, 15/10℃, 25/20℃, and 35/25℃, and two irrigation intervals, 100 mL per day (S) and 200 mL every 2 days (L). The treatments were named 15S, 15L, 25S, 25L, 35S, and 35L. Seedlings at 0.5 cm in height were planted in pots (volume:1 L) filled with sandy loam and treated for 21 days. Photosynthesis, transpiration rate and stomatal conductance at 14 days after treatment were highest in 25S. These were higher in S treatments with a shorter irrigation interval than L treatments. Total amount of irrigation water was supplied evenly at 2 L, but the soil moisture content was highest at 15S and lowest at 25S > 15L > 25L, 35S and 35L in that order. Humidity showed a similar trend at 15/10℃ (61.1%) and 25/20℃ (67.2%), but it was as high at 35/25℃ (80.5%). Cucumber growth (plant height, leaf length, leaf width, chlorophyll content, leaf area, fresh weight and dry weight) on day 21 was the highest in 25S. Growth parameters were higher in S with shorter irrigation intervals. Yellow symptom of leaf was occurred in 89.9% at 35S and 35L, where the temperature was high. Relative growth rate (RGR) and specific leaf weight (SLA) were high at 25/20℃ (25S, 25L), RGR tended to be high in the S treatment, and SLA in the L treatment. Water use efficiency (WUE) was high in the order of 25S, 25L > 15S > 15L, 35S, and 35L. As a result of the above, the growth and WUE were high at the temperature of 25/20℃.

Regional irrigation control modeling and regional climate characteristics Research on the correlation (지역별 관수제어 모델링 및 지역별 기후 특성과의 연관성에 관한 연구)

  • Jeong, Jin-Hyoung;Jo, Jae-Hyun;Kim, Seung-Hun;Choi, Ahnryul;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.184-192
    • /
    • 2021
  • Domestic agriculture is facing real problems, such as a decrease in the population in rural areas, a shortage of labor due to an aging population, and increased risks due to the deepening of climate change. Smart farming technology is being developed to solve these problems. In the development of smart agricultural technology, irrigation control plays an important role in creating an optimal growth environment and is an important issue in terms of environmental protection. This paper is about the study of collecting and analyzing the rhizosphere environmental data of domestic paprika farms for the purpose of improving the quality of crops, reducing production costs, and increasing production. Irrigation control modeling presented in this paper Control modeling is to graphically present changes in a medium weight, feed, and drainage due to regional climatic features. To derive the graph, the parameters were determined through data collection and analysis, and the suggested irrigation control modeling method was applied to the collected rhizosphere environmental data to control irrigation in 6 regions (Gangwon-do, Chungnam, Jeonbuk, Jeonnam, Gyeongbuk, and Gyeongnam). The parameters were obtained and graphs were derived from them. After that, a study was conducted to analyze the derived parameters to verify the validity of the irrigation control modeling method and to correlate them with climatic features (average temperature and precipitation).

An Examination on Cooling Effects According to Water Spray, Top and Side Windows, and Operation of Fan of Single Span Plastic Greenhouses (Part 1) (단동 플라스틱 하우스의 관수, 천.측창 개폐 및 환기팬 조작에 따른 냉각효과 검토 (제1편))

  • 최동호;허종철;임종환;서효덕
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.11a
    • /
    • pp.51-54
    • /
    • 1999
  • 1. 하우스 개폐장치 조작 불능시를 가정하여 천ㆍ측창을 인위적으로 폐쇄한 경우, 하우스내 온도는 외기온 보다 16$^{\circ}C$ 높은, 즉 사실상 작물을 생육할 수 없는 고온상태를 나타내었다. 이러한 결과는 하우스 상태 및 외기조건 등에 따라 다소 상이할 것으로 예상된다. 2. 천ㆍ측창을 개방한 상태에서 환기팬을 가동한 경우, 환기팬 가동에 따른 추가적인 실온 저하 효과는 계측되지 않았다. 3. 본 연구에서는 비교적 노즐 입경이 큰 스프링클러를 이용하여 관수시의 냉각효과를 검토하였다. 이 경우, 하우스내 온도는 스프링클러 작동과 동시에 비교적 짧은 시간내에 급격한 온도강하가 이루어졌다. 이 후 지속적인 온도강하는 둔화되어 비교적 안정된 온도를 유지함으로서, 하우스의 실온저하에 크게 기여하고 있음을 확인할 수 있었다.

  • PDF

Effects of Aeration Temperature and Period after BA Treatment on Growth and Lateral Root Formation of Soybean Sprouts (BA 처리 직후의 Aeration 온도와 기간이 콩나물의 생장과 세근발생에 미치는 영향)

  • 강진호;전병삼;조용준;박철종;윤수영;전승호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.216-221
    • /
    • 2004
  • Treatment effect of benzyladenopurine (BA) used to block the lateral roots formed on soybean sprouts should be influenced by its applying methods. This study was done to check the effects of temperature and period from seed imbibition into 2 ppm BA solution to the first watering for sprout culture on growth and morphology of soybean sprouts. Imbibed three cultivar (cv. Pungsannamulkong, Sowonkong and Junjery) seeds for 5 houys into 2 ppm BA solution were placed under different temperatures (AT; 20, 30, $40^{\circ}$) and periods (AP; 0, 1, 2, 3, 4 hours). On the 6th day, the soybean sprouts were classified by 4 categories on the base of hypocotyl length; >7cm, 4 to 7cm), < 4cm and non-germination to calculate their composition rates, number of lateral roots, lengths of hypocotyl and root diameters at middle and hook of hypocotyl, and fraction dry weights were measured. Germination and growth responses of the cultivars were changed by AT and AP treatments. The responses, lateral root formation and fresh weights were, however, mainly affected by the cultivars used rather than Af treatment. Rate of the sprouts which formed lateral roots was decreased with increased periods to 4 hours, but their number per sprout was not different between the treatments of longer than 3 hours. Lengths of hypocotyl and root organ and total fresh weights were the highest in an hour AP treatment although longer than 3 hour AP treatments did not showed the significant difference in the lengths. Conclusionally AP treatment was more important than Af one in seed aeration for soybean sprout culture immediately after imbibition into BA solution, and was done at least for 3 hours.

Rootzone Profile, Trickle Irrigation System and Turfgrass Species for Roof Turf Garden (옥상녹화에 적합한 지반, 점적 관수 및 잔디 선정)

  • 이재필;한인송;주영규;윤원종;정종일;장진혁;김두환
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.4
    • /
    • pp.155-163
    • /
    • 2003
  • This study was conducted to find out suitable rootzone profile, irrigation system, and turfgrass species for roof turf garden. Treatments of profile with soil amendment were Mixture I: Perlite(PL)60%+Vermiculite(VC)20%+Peatmoss(PM)20%, Mixture II: PL60%+VC 10%+PM20%+Sand(SD)10%, Mixture III: PL60%+VC20%+PM20% and Mixture IV: PL60%+VC10%+PM20%+SD10%+Styrofoam 5cm as a drain layer. To test trickle irrigation for roof garden, intervals of main pipe spacing(50cm, 100cm) and drop hole distance(15, 20, 30, 50 and 100cm)were treated, To select most suitable turfgrass species or mixture, Bermudagrass 'Konwoo', Zoysiagrass 'Konhee' and cool-season grass(Kentucky Bluegrass 80% + Perennial Ryegrass 20%, Tall Fescue 30% + KB50% + PR 20%)were tested. In particle size analysis, the soil amendments Perlite and vermiculite showed very even distribution, however, peatmoss contained mostly coarse particles with fiber over $\Phi$ 4.75mm. Under field moisture condition, vermiculite and peatmoss showed 350% water holding capacity, on the other hand, sand or Perlite showed 115% and 166%, respectively. Total weight of soil profile was 139.2kg/$m^2$ with Styrofoam drain layer without sand, which showed most lightest among treatments. Turf quality also resulted positve with Styrofoam drain layer installation. On trickle irrigation system, the proper interval of main drain pipe spacing and drop hole distance were 50cm and 50cm, respectively, In irrigation frequency, once per a day for 15 minute irrigation with 2 1/hr showed the best results on turf quality. Among turfgrass species or cool season grass mixture, warm season turfgrass fine leaf type zoysiagrass 'Konhee' and Bermudagrass 'Konwoo' showed very acceptable result on all over the treatments of rootzone and irrigation system. To apply cool season grasses for the roof garden, advanced researches may be needed to establish the proper soil amendment, rootzone profile, and irrigation system, Application of Bermudagrass 'Konwoo' for roof turf garden also needs successive tests to overcome winter injuries.

Influence of Root Restriction Materials and Media on Soil Environment and Growth of Runner Plantlets during Propagation of 'Seolhyang' Strawberry (차근육묘를 위한 자재 및 배지 종류가 토양환경과 '설향' 딸기 자묘의 생장에 미치는 영향)

  • Park, Gab Soon;Chae, Soo Cheon;Oh, Chan Sik;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.511-517
    • /
    • 2015
  • This research was conducted to evaluate the influence of root restriction materials and media on the growth of runner plantlets of 'Seolhyang' strawberry in a nursery field. To achieve this, the influence of three kinds of root media on the growth of runner plantlets was monitored when polyethylene film was used as the root restriction material. In addition, the influence of various root restriction materials (RRS) such as transparent polyethylene film (PE), non-woven fabric (NF), perforated polyethylene film (PP), and root proofing sheet (RPS) on the changes in volumetric water content (VWC) and temperature of root media as well as growth of runner plantlet were investigated when expanded rice hull (ERH) was used as the root medium. In the comparison of root media, growth parameters such as leaf area and crown thickness at 20 d after fixation as well as crown thickness and fresh weights of root and above-ground tissue at 40 d after runner plantlet fixation were higher in the ERH treatment than in sandy loam and loamy sand. When the influence of RRS was compared, the VWC of ERH was 55% just after irrigation, but decreased to 26% at just before irrigation. Ranges of the VWC as influenced by irrigation cycle were 16 to 10% in the PP and less than 10% in the NF and RPS. The soil temperature in the PE treatment was around $1^{\circ}C$ lower than in NF, PP, and RPS. The differences between day and night temperatures were also smaller in the PE treatment rather than those in NF, PP, and RPS. The growths of runner plantlet 50 d after fixation showed that plant heights as well as fresh weights of root and above-ground tissue were higher in the PE treatment than in NF, PP, and RPS. NF and PP did not effectively restrict roots inside the medium and the roots of runner plantlets penetrated through the root restriction materials resulting in the formation of root system below the restriction materials. The above results indicate that ERH is more effective than sandy loam or loamy sand as root medium. PE rather than NF, PP, or RPS as root restriction material resulted in better growth of runner plantlets in propagation of 'Seolhyang' strawberry. The results of this research will be used for production of high quality runner plantlets in strawberry propagation.

Optimum Management for Overwintering of Pinus densiflora Container Seedlings (소나무 용기묘의 적정 월동 관리)

  • Kim, Jong Jin;Song, Kook Hyun;Yoon, Taek Seong
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • This study was carried out to investigate the optimum management system during a overwintering for the production of Pinus densiflora container 2-0 seedlings. The experiment performed between 2005~2006 in a polyethylene film house (PE house) located at Yeoju-Gun in Kyungki-Do. During the winter in the PE house, the difference in maximum day temperature and minimum day temperature was large, and the difference in temperature was detected between the container keeping locations. During the winter season, the maximum day temperatures at the seedling bench in January and February were $32.8^{\circ}C$ and$36.6^{\circ}C$, respectively, whereas those at the ground in January and February were $16.0^{\circ}C$ and $24.4^{\circ}C$, respectively. Water contents of container seedlings was reduced gradually from the beginning the experiment, and reduced rapidly from February to March, and increased rapidly from April. Container seedlings showed different death rate according to the extending of the irrigation cycle. Death rate by one week and two weeks of irrigation cycle was 4.8% and 6.5%, and 38.5% and 49.4% of death rate occurred by three and four weeks of irrigation cycle, respectively. It is suggested that the proper irrigation cycle for P. densiflora 2-0 container seedlings during overwintering is two weeks. When containers placed directly on the ground, the root of container seedlings went out through the drainage of the container, and grew out in the soil. These roots were cut while moving the container to the bench in spring.