• Title/Summary/Keyword: 관성 측정 시스템

Search Result 127, Processing Time 0.031 seconds

Error analysis for a strapdown inertial navigation system (스트랩다운 관성항법장치의 오차해석)

  • 심덕선;박찬국;송유섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.286-289
    • /
    • 1986
  • 항법(navigation)은 기준좌표계에 대한 항체(vehicle)의 위치나 속도를 알아내기 위한 것으로 이를 위한 시스템이 관성항법장치(inertial navigation system-INS)이며 항법기능을 수행하기 위하여 항체에 놓여진 쎈서의 관성성질을 이용한다. INS는 specific force와 관성 각속도의 측정에서 얻은 데이타를 처리함으로 그 기능을 수행한다. 스트랩다운 INS(SINS)는 관성항법장치의 한 종류로 analytic INS라고도 하는데 기준좌표축을 유지하기 위하여 안정테이블을 사용하지 않고 쎈서들을 항체에 직접 부착시켜 초기상태와 현재상태와의 사이에 상대적인 회전방향을 해석적으로 계산한다. INS의 성능은 수많은 오차원(error source)의 함수로 주어지며 이 오차원 중에는 주위환경에 의한 것도 있고 INS 구성에 사용된 기구(instruments)와 관련된 것도 있다. INS 를 해석하는 목적은 항법의 정확도를 알아보는데 있으며 또한 각각의 오차원의 값을 추정하는 것도 부가적인 목적이 된다. 이러한 오차의 추정치는 사양(specification)을 모르는 부품의 성능을 식별하는데 사용될 수 있다. 따라서 INS를 해석함으로 INS를 구성하는 어떤 부품에 대한 성능이 어느정도 개선을 필요로 하는가 알 수 있다. 본 논문에서는 SINS의 오차원을 크게 고도계의 불확실성, 중력의 편향과 이상, 가속도계의 불확실성, 자이로의 불확실성의 네 그룹으로 나누어 상호분산해석(covariance analysis)방법으로 각 오차원이 시스템에 미치는 영향을 알아보았다.

  • PDF

A survey of methods for IMU calibration and calibration-update (관성측정장치의 인자측정 및 재측정 방법 고찰)

  • 이허수;백승철;이종희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.507-512
    • /
    • 1987
  • Input/output equations in SDINS IMU are modeled from survey of IMU data flow. Given without precise equipments which can generate acceleration and angular velocity, a simple method is derived to calibrate the parameters of i/o eqijations. Also in order to upgrade ins performance, methods to estimate variant magnitudes of time variant parameters are surveyed.

  • PDF

Development of Gesture Recognition System using Inertial Sensors (관성 센서를 이용한 동작 인식 시스템의 개발)

  • Im Seong-Min;Choi U-Gyeong;Seo Jae-Yong;Kim Yong-Min;Jeon Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.343-346
    • /
    • 2006
  • 스마트 홈서비스가 이루어질 앞으로의 가정에서는 거주자의 편리를 추구하는 다수의 가전기기와 다양한 장치를 통해 여러 형태의 서비스가 제공된다. 그 환경의 중심에서 사용자는 무엇보다 손쉽고 편리하게 이들을 시용할 수 있어야 한다. 기존에는 사용자가 쉽게 휴대할 수 있는 소형 컴퓨터, PDA, 휴대폰을 이용해 스마트 홈서비스를 제어하는 연구가 이루어지고 있다. 하지만 이들을 사용하는 것은 복잡하면서 전문적인 지식이 필요할 수 있으며 항상 결에 두어야 한다는 불편함이 있을 수 있다. 이에 본 논문에서는 관성센서를 이용한 동작인식 시스템을 개발하였다. 이 시스템은 자이로 센서와 가속도 센서를 사용하며 3축의 자이로(각속도) 및 가속도를 측정할 수 있는 센서 모듈과 측정된 데이터를 이용해서 동작 패턴을 분류해 주는 알고리즘으로 구성된다. 차후에 홈 네트워크 시스템과의 결합을 통해 미리 지정된 간단한 손동작만으로 여러 가전기기를 제어할 수 있을 것이며 특히 노약자나 장애인들이 기존의 리모트 컨트롤 등의 복잡한 제어 장치를 대신해서 간편하고 손쉽게 사용할 수 있을 것이다.

  • PDF

A Study on Position Control of 2-Mass Resonant System Using Iterative Learning Control (반복 학습 제어를 이용한 2관성 공진계의 위치 제어에 관한 연구)

  • Lee, Hak-Sung;Moon, Seung-Bin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.693-698
    • /
    • 2004
  • In this paper, an iterative learning control method is applied to suppress a vibration of a 2-mass system which has a flexible coupling between a load and a motor. More specifically, conditions for the load speed without vibration are derived based on the steady-state condition. And the desired motor position trajectory is synthesized based on the relation between the load and motor speed. Finally, a PD-type iterative learning control law is applied for the desired motor position trajectory. Since the learning law applied for the desired trajectory guarantees the perfect tracking performance, the resulting load speed shows no vibration even when there exist model uncertainties. A modification to the learning law is also Presented to suppress undesired effects of an initial position error, The simulation results show the effectiveness of the proposed learning method.

Development of a Squat Angle Measurement System using an Inertial Sensor (관성 센서기반 스쿼트 각도 측정 융합 시스템 개발)

  • Joo, Hyo-Sung;Woo, Ji-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.355-361
    • /
    • 2020
  • The squat is an exercise that can effectively improve the muscle strength of the lower body, which can be performed in a variety of places without restrictions on places including homes. However, injuries due to incorrect motion or excessive angles are frequently occurring. In this study, we developed a single sensor-based squat angle measurement system that can inform the squat angle according to the correct motion during the squat exercise. The sensor module, including the acceleration sensor and the gyro sensor, is attached to the user's thigh. The squat angle was calculated using the complementary filter complementing the pros and cons of acceleration and gyro sensor. It was found that the calculated squat angle showed the proper correlation compared to the squat angle measured by a goniometer, and the influence of the coefficient of the complementary filter on the accuracy was evaluated.

Development of Wireless Ambulatory Measurement System based on Inertial Sensors for Gait Analysis and its Application for Diagnosis on Elderly People with Diabetes Mellitus (관성센서 기반의 무선보행측정시스템 개발 및 노인 당뇨 환자 보행 진단에의 응용)

  • Jung, Ji-Yong;Yang, Yoon-Seok;Won, Yong-Gwan;Kim, Jung-Ja
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.38-46
    • /
    • 2011
  • 3D motion analysis system which is currently widely used for walking analysis has limitations due to both necessity of wide space for many cameras for measurement, high cost, and complicated preparation procedure, which results in low accessability in use and application for clinical diagnosis. To resolve this problem, we developed 3-dimensional wireless ambulatory measurement system based on inertial sensor which can be easily applicable for clinical diagnosis for lower extremity deformity and developed system was evaluated by applying for 10 elderly people with diabetes mellitus. Developed system was composed of wireless ambulatory measurement module that consists of inertial measurement unit (IMU) which measures the gait characteristics, microcontroller which collects and precesses the inertial data, bluetooth device which transfers the measured data to PC and Window's application for storing and processing and analyzing received data. This system will utilize not only to measure lower extremity (foot) problem conveniently in clinical medicine but also to analyze 3D motion of human in other areas as sports science, rehabilitation.

Design of Inertial Navigation System/Celestial Navigation System Navigation System for Horizontal Position Estimation and Performance Comparison Between Loosely and Tightly Coupled Approach (수평 위치정보 추정을 위한 관성/천측 항법시스템 설계 및 약결합/강결합 방식의 성능 비교)

  • Kiduck Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.58-71
    • /
    • 2023
  • This paper describes a navigation system design for horizontal position estimation using inertial measurement sensors and celestial navigation. In space, stars are widely spread objects in the celestial sphere and have been used mainly to obtain attitude information through star observation. However, it is also possible to obtain information about the horizontal position with the altitude of the star. It is called celestial navigation which is the same principle that former navigators used to locate themselves while sailing on the sea. In particular, in deep space where GPS is not available, it is important to obtain information on the location by making use of stars that are relatively easy to observe. Therefore, we introduce a navigation system that can estimate horizontal position and design two types of systems, loosely coupled and tightly coupled depending on how the measurements are utilized. It is intended to help in the future design of navigation system using celestial navigation by simulation studies that not only verify whether the system correctly estimates horizontal position but also comparing the performance of loosely and tightly coupled methods.

A Study of High Precision Position Estimator Using GPS/INS Sensor Fusion (GPS/INS센서 융합을 이용한 고 정밀 위치 추정에 관한 연구)

  • Lee, Jeongwhan;Kim, Hansil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.159-166
    • /
    • 2012
  • There are several ways such as GPS(Global Positioning System) and INS (Inertial Navigation System) to track the location of moving vehicle. The GPS has the advantages of having non-accumulative error even if it brings about errors. In order to obtain the position information, we need to receive at least 3 satellites information. But, the weak point is that GPS is not useful when the 혠 signal is weak or it is in the incommunicable region such as tunnel. In the case of INS, the information of the position and posture of mobile with several Hz~several hundreds Hz data speed is recorded for velocity, direction. INS shows a very precise navigational performance for a short period, but it has the disadvantage of increasing velocity components because of the accumulated error during integration over time. In this paper, sensor fusion algorithm is applied to both of INS and GPS for the position information to overcome the drawbacks. The proposed system gets an accurate position information from experiment using SVD in a non-accessible GPS terrain.

Design and Implementation of BNN-based Gait Pattern Analysis System Using IMU Sensor (관성 측정 센서를 활용한 이진 신경망 기반 걸음걸이 패턴 분석 시스템 설계 및 구현)

  • Na, Jinho;Ji, Gisan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.365-372
    • /
    • 2022
  • Compared to sensors mainly used in human activity recognition (HAR) systems, inertial measurement unit (IMU) sensors are small and light, so can achieve lightweight system at low cost. Therefore, in this paper, we propose a binary neural network (BNN) based gait pattern analysis system using IMU sensor, and present the design and implementation results of an FPGA-based accelerator for computational acceleration. Six signals for gait are measured through IMU sensor, and a spectrogram is extracted using a short-time Fourier transform. In order to have a lightweight system with high accuracy, a BNN-based structure was used for gait pattern classification. It is designed as a hardware accelerator structure using FPGA for computation acceleration of binary neural network. The proposed gait pattern analysis system was implemented using 24,158 logics, 14,669 registers, and 13.687 KB of block memory, and it was confirmed that the operation was completed within 1.5 ms at the maximum operating frequency of 62.35 MHz and real-time operation was possible.

Data Analysis of Inertial Sensors for Train Positioning Detection System (열차위치검지 시스템을 위한 관성센서 데이터 분석 연구)

  • Kim, Seong Jin;Park, Sungsoo;Lee, Jae-Ho;Kang, Donghoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • Train positioning detection information is fundamental for high-speed railroad inspection, making it possible to simultaneously determine the status and evaluate the integrity of railroad equipment. This paper presents the results of measurements and an analysis of an inertial measurement unit (IMU) used as a positioning detection sensors. Acceleration and angular rate measurements from the IMU were analyzed in the amplitude and frequency domains, with a discussion on vibration and train motions. Using these results and GPS information, the positioning detection of a Korean tilting train express was performed from Naju station to Illo station on the Honam-line. The results of a synchronized analysis of sensor measurements and train motion can help in the design of a train location detection system and improve the positioning detection performance.