• Title/Summary/Keyword: 관성측정 장치

Search Result 145, Processing Time 0.032 seconds

External Gravity Field in the Korean Peninsula Area (한반도 지역에서의 상층중력장)

  • Jung, Ae Young;Choi, Kwang-Sun;Lee, Young-Cheol;Lee, Jung Mo
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.451-465
    • /
    • 2015
  • The free-air anomalies are computed using a data set from various types of gravity measurements in the Korean Peninsula area. The gravity values extracted from the Earth Gravitational Model 2008 are used in the surrounding region. The upward continuation technique suggested by Dragomir is used in the computation of the external free-air anomalies at various altitudes. The integration radius 10 times the altitude is used in order to keep the accuracy of results and computational resources. The direct geodesic formula developed by Bowring is employed in integration. At the 1-km altitude, the free-air anomalies vary from -41.315 to 189.327 mgal with the standard deviation of 22.612 mgal. At the 3-km altitude, they vary from -36.478 to 156.209 mgal with the standard deviation of 20.641 mgal. At the 1,000-km altitude, they vary from 3.170 to 5.864 mgal with the standard deviation of 0.670 mgal. The predicted free-air anomalies at 3-km altitude are compared to the published free-air anomalies reduced from the airborne gravity measurements at the same altitude. The rms difference is 3.88 mgal. Considering the reported 2.21-mgal airborne gravity cross-over accuracy, this rms difference is not serious. Possible causes in the difference appear to be external free-air anomaly simulation errors in this work and/or the gravity reduction errors of the other. The external gravity field is predicted by adding the external free-air anomaly to the normal gravity computed using the closed form formula for the gravity above and below the surface of the ellipsoid. The predicted external gravity field in this work is expected to reasonably present the real external gravity field. This work seems to be the first structured research on the external free-air anomaly in the Korean Peninsula area, and the external gravity field can be used to improve the accuracy of the inertial navigation system.

A Study on GPS-Van Application for Editing and Updating Digital Map of Road System (도로기반 수치지도의 수정 및 갱신을 위한 GPS-Van 적용에 관한 연구)

  • Joo, Young-Eun;Lee, Hyung-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.129-141
    • /
    • 2005
  • It is difficult to edit large-scale digital maps because of problems of cost and process and it is carried out by aerial photogrammetry in renewal periods. Five years of update period cannot provide exact data required in the fast-moving age. This study is to analyze applicability and impact for editing digital map of road system using the GPS-Van. Results are compared with accuracy of the data acquisition with GPS-Van positioning. INS data are affected by the barrier to receive GPS data. But high accuracy were achieved by thorough plans according to work order. By using GPS Van and fieldwork at the same time for editing and renewal of digital map, it is expected that this method can be used to reduce costs in the economic and temporal aspects, and provide rapid and accurate digital map of road system.

  • PDF

Control of an Artificial Arm using Flex Sensor Signal (굽힘 센서신호를 이용한 인공의수의 제어)

  • Yoo, Jae-Myung;Kim, Young-Tark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.738-743
    • /
    • 2007
  • In this paper, a muscle motion sensing system and an artificial arm control system are studied. The artificial arm is for the people who lost one's forearm. The muscle motion sensing system detect the intention of motion from the upper arm's muscle. In sensing system we use flex sensors which is electrical resistance type sensor. The sensor is attached on the biceps brachii muscle and coracobrachialis muscle of the upper arm. We propose an algorithm to classify the one's intention of motions from the sensor signal. Using this algorithm, we extract the 4 motions which are flexion and extension of the forearm, pronation and supination of the arm. To verify the validity of the proposed algorithms we made experiments with two d.o.f. artificial arm. To reduce the control errors of the artificial arm we also proposed a fuzzy PID control algorithm which based on the errors and error rate.

Stereo Semi-direct Visual Odometry with Adaptive Motion Prior Weights of Lunar Exploration Rover (달 탐사 로버의 적응형 움직임 가중치에 따른 스테레오 준직접방식 비주얼 오도메트리)

  • Jung, Jae Hyung;Heo, Se Jong;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.479-486
    • /
    • 2018
  • In order to ensure reliable navigation performance of a lunar exploration rover, navigation algorithms using additional sensors such as inertial measurement units and cameras are essential on lunar surface in the absence of a global navigation satellite system. Unprecedentedly, Visual Odometry (VO) using a stereo camera has been successfully implemented at the US Mars rovers. In this paper, we estimate the 6-DOF pose of the lunar exploration rover from gray images of a lunar-like terrains. The proposed algorithm estimates relative pose of consecutive images by sparse image alignment based semi-direct VO. In order to overcome vulnerability to non-linearity of direct VO, we add adaptive motion prior weights calculated from a linear function of the previous pose to the optimization cost function. The proposed algorithm is verified in lunar-like terrain dataset recorded by Toronto University reflecting the characteristics of the actual lunar environment.

Aided Navigation Algorithm for Land Navigation System Using VMS with Indirect Drive Condition (직진성이 보장되지 않는 조건에서 지상항법시스템의 속도계를 이용한 보정항법 알고리즘)

  • Kim, Hyungsoo
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.314-320
    • /
    • 2016
  • Inertial navigation system (INS) has used aided systems and sensors to compensate navigation error. Global navigation satellite system (GNSS), velocity measurement sensor (VMS), and radar are commonly used to aid INS. Land navigation system (LNS) also mainly uses VMS when GNSS cannot be used such as at tunnel or on jammed scenario. A straight drive is required when VMS-aided navigation is used, because there is only speed of straight direction whereas no crossways and vertical directions. In local environment, even an expressway has lack of straight drive which is constraint of VMS-aided navigation algorithm. This paper proposes an enhanced VMS-aided navigation algorithm for LNS with indirect drive by restricting filter update condition. Also, there is a result of vehicle test to prove performance of the proposed algorithm.

Performance Analysis of Navigation System for Guidance and Control of High Speed Underwater Vehicle System (고속 수중운동체 정밀 유도제어를 위한 항법성능 분석)

  • Hong, Sung-Pyo;Han, Yong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2227-2232
    • /
    • 2013
  • To obtain the system requirement specification in the beginning of the precision guidance system development, the effectiveness and reliability analysis for the system are necessary. The main purpose of this research is to obtain the system requirement specification for the high speed unmanned underwater vehicles by carrying out the effectiveness analysis using the modeling and simulation scheme. The effectiveness is position error for target position. Reaching accuracy is expected to be affected by the navigation sensor parameter. Assume that the navigation sensors that is consist of inertial navigation system(INS) and doppler velocity log(DVL) is the parameter. To analyze the effectiveness of each parameter, Monte-Carlo numerical simulation is performed in this research. The effectiveness analysis is carried out using circular error probability(CEP) and variance analyze scheme. Considering the cost function, the specification of the navigation sensor is provided. The cost function is consist of the INS and DVL specification and the price of those sensors.

Feasibility on Evaluation of Movement System Impairment Syndromes by MEMS-IMU (관성측정장치를 이용한 동태손상증후군의 평가 가능성에 관한 고찰)

  • Kim, Hyun-Ho;Kim, Jeong-Kyun;Seo, Jae-Ho;Park, Young-Jae;Park, Young-Bae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.15 no.3
    • /
    • pp.223-234
    • /
    • 2011
  • Objectives: This study shows feasibility and suitability of a microelectromechanical system inertial measurement unit(MEMS-IMU) as a helpful measurement device for evaluating movement system impairment syndrome. Methods: We reviewed articles of two fields in this study. First, we reviewed articles about movement system impairment syndrome(MSIS) as a brand new viewpoint of diagnosing and treating musculoskeletal pain. Second, we reviewed articles about conventional motion analysis system and inertial measurement unit(IMU) to show the superiority of IMU in analyzing the human movement. All papers were searched by SciVerse, world largest search engine and database about many academic fields including engineering and medicine. Results: Some physical quantities of human motions can be useful to the diagnosis of MSIS, and those data can be obtained by the MEMS-IMU without the weak points of the conventional motion analysis systems. Conclusions: Using MEMS-IMU as a measurement unit for diagnosing and evaluating MSIS is feasible and can be extended to many further studies.

A Development Of Multi-sensor System For Location Determination Of Fixed-path Movement Attractions (고정경로 이동 어트랙션의 위치 판단을 위한 다중 센서 시스템의 개발)

  • You, Eun-Jae;Jeong, Hwi-Sang;Lee, Hyoun-Sup;Kim, Jin-deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.709-714
    • /
    • 2018
  • Visual Reality technology is becoming more and more interesting as it attracts people's interest. VR technology is used in various markets such as games, animation, and education. However, there were many people experiencing motion sickness such as dizziness and headache due to the delay time between hardware such as a device for sending a video after experiencing a VR image and an HMD for reproducing an image. The system proposed in this paper focuses on the environment rather than the movement of the attraction and detects the dividing line existing on the path by the proximity sensor and accurately calculates the position on the path according to the user 's motion. Since the position of the user is synchronized with the VR image, the position error of the user is improved to 0.2%.

Mapping algorithm for Error Compensation of Indoor Localization System (실내 측위 시스템의 오차 보정을 위한 매핑 알고리즘)

  • Kim, Tae-Kyum;Cho, We-Duke
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.109-117
    • /
    • 2010
  • With the advent of new technologies such as HSDPA, WiBro(Wireless Broadband) and personal devices, we can access various contents and services anytime and anywhere. A location based service(LBS) is essential for providing personalized services with individual location information in ubiquitous computing environment. In this paper, we propose mapping algorithm for error compensation of indoor localization system. Also we explain filter and indoor localization system. we have developed mapping algorithms composed of a map recognition method and a position compensation method. The map recognition method achieves physical space recognition and map element relation extraction. We improved the accuracy of position searching. In addition, we reduced position errors using a dynamic scale factor.

A study of submicron particle deposition onto cylinder surface in nonisothermal two-phase flow (비등온 이상유동에서 원통벽면으로의 미소입자 부착에 관한 연구)

  • 정상현;김용진;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.828-836
    • /
    • 1987
  • The inclusion of thermophoresis in particle deposition studies has often been treated separately from deposition due to flow characteristics. Also previously reported experimental results on thermophoresis have been studied in the regions of relatively small temperature gradients. In this study, using real-time laser light reflectivity method, we measured the angular dependence of the deposition rates of particles of the cylindrical collector surface, which immerged in laminar flow of a hot gas suspension of small particles. And we extended the previous narrowband results of thermophoretic deposition rates to the regions of large temperature gradients between the hot gas stream and the collector surface. Based on the obtained data, the cylinder's forward stagnation-point region is considerably enriched in particle 'phase' density owing to the compressibility effect, which leads to locally enhanced deposition while the downstream region from the stagnation point inertial force acts in the opposite direction, which tends to centrifuge particles away from the wall, thus the local deposition rates by thermophoresis are reduced.