Browse > Article
http://dx.doi.org/10.5391/JKIIS.2007.17.6.738

Control of an Artificial Arm using Flex Sensor Signal  

Yoo, Jae-Myung (서울산업대학교 나노생산기술연구소)
Kim, Young-Tark (중앙대학교 기계공학부)
Publication Information
Journal of the Korean Institute of Intelligent Systems / v.17, no.6, 2007 , pp. 738-743 More about this Journal
Abstract
In this paper, a muscle motion sensing system and an artificial arm control system are studied. The artificial arm is for the people who lost one's forearm. The muscle motion sensing system detect the intention of motion from the upper arm's muscle. In sensing system we use flex sensors which is electrical resistance type sensor. The sensor is attached on the biceps brachii muscle and coracobrachialis muscle of the upper arm. We propose an algorithm to classify the one's intention of motions from the sensor signal. Using this algorithm, we extract the 4 motions which are flexion and extension of the forearm, pronation and supination of the arm. To verify the validity of the proposed algorithms we made experiments with two d.o.f. artificial arm. To reduce the control errors of the artificial arm we also proposed a fuzzy PID control algorithm which based on the errors and error rate.
Keywords
Rehabilitation Engineering; Surface electrode; EMG; Flex sensor; Prosthesis; Fuzzy controller;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. S. Atal, 'Effectiveness of linear prodiction characteristics of the speech wave for automatic sperker identification and verification', JASA., Vol.55, pp. 1304-1312, 1974   DOI   ScienceOn
2 R. M. Studer, 'An algorithm for sequential signal estimation and system identification for EMG signals', IEEE Trans. Biomedical Engineering, Vol.BME-31, No.3, pp. 285-295, 1984   DOI   ScienceOn
3 P. A. O'Neill, 'Myoelectric signal characteristics from muscles in residual upper limbs', IEEE Trans. Rehabilitation Engineering, Vol.2, No.4, 1994
4 D. Graupe, W. Cline, 'Functional Separation of EMG Signals via ARMA Identification Methods for Prostehesis control purposes', IEEE Trans. on System, Manand Cybernetics, Vol. SMC-5, No.2, pp. 252-259, 1975   DOI   ScienceOn
5 G. N. Saridis, M. A. Newman, 'Upper limb EMG statistical analysis', Proc. MIDCON, 1979
6 Al-Assaf, Y. AI-Nashash, H., 'Myoelectric signal segmentation and classification using wavelets based neural networks', 2001. Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol.2, pp. 1820-1823, 2001
7 L. H. Lindstrom, R. I. Magnusson, 'Interpretation of myoelectric power spectra: a model its application', Proc. IEEE, Vol.65, No.5, pp. 653-662, 1977
8 D. C. Dening, F. G. Gray and R. M. Haralick, 'Prosthesis control using a nearest neighbor electromyographic pattern classifier', IEEE Trans. Biomedical Engineering, Vol.30, pp.356-360, 1983   DOI
9 G. N. Saridis, T. Gootee, 'EMG pattern analysis and classification for a prosthetic arm', IEEE Trans. Biomedical Engineering, Vol.BME-29, pp. 403-409, 1982   DOI   ScienceOn
10 F. B. Stulen, C. J. Luca, 'Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity', IEEE Tran. Biomedical Engineering, Vol.BME-28, pp. 515-523, 1981   DOI   ScienceOn
11 J. D. Markhoul, 'Linear Prediction: A tutorial review', Proceedings IEEE, Vol.63, pp.561-579, 1975   DOI   ScienceOn
12 G. Hefftner, W. Zucchini and G. Jaros, 'The electromygram(EMG) as a control signal for functional neuromuscular stimulation-Part I: Autoregressive modelling as a means of EMG signature discrimination', IEEE Trans. Biomedical Engineering, Vol.BME-35, pp. 230-237, 1988
13 M. H. Sheriff, 'Effects of load on myoelectric singals: ARMA representation', IEEE Trans. Biomedical Engineering, Vol.BME-28, pp. 411-416, 1981   DOI   ScienceOn
14 K. Nishikawa, K. Kuribayashi, 'Neural Network Application to a Discrimination System for EMG-Controlled Prostheses', IEEE/RSJ International Workshop on Intelligent Robots and Systems, Vol.1, pp.231-236, 1991
15 H. Y. Chan, Yang-Sheng Yang and F. K. Lam, 'Fuzzy EMG classification for prosthesis control', IEEE Trans. on Rehabilitation Engineering, Vol.8 Iss.3, pp. 305-311, 2000   DOI   ScienceOn
16 D. Graupe, 'Time series analysis: Identification and adaptive filtering', R. E .Kreger Pub. Co., 1984
17 2004 고령자 통계, 통계청
18 T. Kiryu, Y. Saitoh and K. Ishioka, 'Inverstigation on parametric analysis of dynamic EMG signals by a muscle-sutrutured simulation model', IEEE Trans. Biomedical Engineering, Vol.BME-39, pp. 280 -288, 1992
19 L. R. Rabiner, R. W. Schafer, 'Digital Processing of Speech Singnals', Englewood Cliffs, NJ ; Prentice-Hall, 1978
20 S. M. Kay, 'Modem Spectral Estimation: Theory and Application', Englewood Clifs, NJ : PrenticeHall, 1988
21 S. Lee, S. Park and J. Kim, 'EMG Pattern Recognition based on Evidence Accumulation for Prosthesis Control', Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicineand Biology Society, Vol.3, pp. 1481-1483, 1996
22 유재명, 김영탁, '생체 근육 신호를 이용한 보철용 팔의 제어,' 한국정밀공학회 2005년 춘계학술대회, pp. 1944-1947, 2005
23 O. Fukuda, T. Tsuji and K. Takahasi, 'Skill assistance for myoelectric control using an event driven task model', 2002. IEEE/RSj International Conference on Intelligent Robots and System, Vol.2, pp. 1445-1450, 2002
24 2004 보건복지백서, 보건복지부
25 J. D. Markel, A. H. Gray, 'Linear Prediction of Speech', Berlin Heidelberg:Springer-Verlag, 1976