• Title/Summary/Keyword: 관계그래프

Search Result 692, Processing Time 0.029 seconds

Subgraph Searching Scheme Based on Path Queries in Distributed Environments (분산 환경에서 경로 질의 기반 서브 그래프 탐색 기법)

  • Kim, Minyoung;Choi, Dojin;Park, Jaeyeol;Kim, Yeondong;Lim, Jongtae;Bok, Kyoungsoo;Choi, Han Suk;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.141-151
    • /
    • 2019
  • A network of graph data structure is used in many applications to represent interactions between entities. Recently, as the size of the network to be processed due to the development of the big data technology is getting larger, it becomes more difficult to handle it in one server, and thus the necessity of distributed processing is also increasing. In this paper, we propose a distributed processing system for efficiently performing subgraph and stores. To reduce unnecessary searches, we use statistical information of the data to determine the search order through probabilistic scoring. Since the relationship between the vertex and the degree of the graph network may show different characteristics depending on the type of data, the search order is determined by calculating a score to reduce unnecessary search through a different scoring method for a graph having various distribution characteristics. The graph is sequentially searched in the distributed servers according to the determined order. In order to demonstrate the superiority of the proposed method, performance comparison with the existing method was performed. As a result, the search time is improved by about 3 ~ 10% compared with the existing method.

Inferring Undiscovered Public Knowledge by Using Text Mining-driven Graph Model (텍스트 마이닝 기반의 그래프 모델을 이용한 미발견 공공 지식 추론)

  • Heo, Go Eun;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.1
    • /
    • pp.231-250
    • /
    • 2014
  • Due to the recent development of Information and Communication Technologies (ICT), the amount of research publications has increased exponentially. In response to this rapid growth, the demand of automated text processing methods has risen to deal with massive amount of text data. Biomedical text mining discovering hidden biological meanings and treatments from biomedical literatures becomes a pivotal methodology and it helps medical disciplines reduce the time and cost. Many researchers have conducted literature-based discovery studies to generate new hypotheses. However, existing approaches either require intensive manual process of during the procedures or a semi-automatic procedure to find and select biomedical entities. In addition, they had limitations of showing one dimension that is, the cause-and-effect relationship between two concepts. Thus;this study proposed a novel approach to discover various relationships among source and target concepts and their intermediate concepts by expanding intermediate concepts to multi-levels. This study provided distinct perspectives for literature-based discovery by not only discovering the meaningful relationship among concepts in biomedical literature through graph-based path interference but also being able to generate feasible new hypotheses.

Sketch-based Graph-Control User Interface Method for Personal Information Management (개인정보관리를 위한 스케치기반 그래프 컨트롤 사용자 인터페이스 기법)

  • Kim, Jung-Jin;Park, Tae-Jin;Jeon, Jae-Woong;Choy, Yoon-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.7
    • /
    • pp.893-902
    • /
    • 2009
  • Many People are collecting and managing variable information(Image, Graphic, Animation, Text, music files etc.) about personal interests and holding them in common. Most users are using Microsoft Explorer to make a folder and classify many files. but It's difficult to understand the relation of the data instinctively. To resolve this problem, we adopt information visualization method (especially tree-graph control interface). We suggest an interface that all user can drawing a Graph easily and rapidly. So user can see the relations of their data instinctively and control the relation directly with our sketch-based interface.

  • PDF

A discursive approach to analysis of definition of graph in first year middle school textbooks (담론적 관점(discursive approach)에서 중1 수학 교과서의 그래프 정의 분석)

  • Kim, Won;Choi, Sang-Ho;Kim, Dong-Joong
    • Communications of Mathematical Education
    • /
    • v.32 no.3
    • /
    • pp.407-433
    • /
    • 2018
  • In order to analyze textbooks from a discursive approach, the purpose of this study is to structuralize an analytic framework based on previous literature review and apply it to analyzing the meanings and their syntheses developed by words and visual mediators appeared in the definition of graph in first-year middle school textbooks. The discursive approach consists of the communicational approach developed by Sfard(2008) and the systemic functional linguistics developed by Halliday(1985/2004). In this study, ideational meta-functions for ideational meanings and interpersonal meta-functions for interpersonal meanings were employed to analyze the meanings produced by words and visual mediators in textbooks, whereas textual meta-functions for textual meanings were used for analyzing the synthesized relationships between words and visual mediators. Results show that first, density in mathematical discourse was very high and subjects in mathematical activities were ambiguous in the ideational meanings of words, and behavior aspect was more emphasized than thinking aspect in the interpersonal meanings of words which request student participations. In the case of ideational meanings of visual mediators, there was a lack of narrative diagrams, whereas there were qualitative differences in the case of offer. Second, there was a need for promoting a wide range of diverse synthetic relationships between words and visual mediators for developing enriched mathematical meanings through the varying uses like specification, explanation, similarity, and complement. These results are so important that they provide a new analytic framework from a discursive approach to textbook analysis because not only words, but also visual mediators are analyzed as tools for producing meanings in mathematics textbooks and their synthetic relationships are also examined.

Building Knowledge Graph of the Korea Administrative District for Interlinking Public Open Data (공공데이터의 의미적 연계를 위한 행정구역 지식 그래프 구축)

  • Kim, Haklae
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.12
    • /
    • pp.1-10
    • /
    • 2017
  • Open data has received a lot of attention from around the world. The Korean government is also making efforts to open government data. However, despite the quantitative increase in public data, the lack of data is still pointed out. This paper proposes a method to improve data sharing and utilization by semantically linking public data. First, we propose a knowledge model for expressing administrative districts and their semantic relationships in Korea. An administrative district is an administrative unit that divides the territory of a nation, which is a unit of politics, according to the purpose of the state administration. The knowledge model of the administrative district defines the structure of the administrative district system and the relationship between administrative units based on the Local Autonomy Act. Second, a knowledge graph of the administrative districts is introduced. As a reference information to link public open data at a semantic level, some characteristics of a knowledge graph of administrative districts and methods for linking heterogeneous public open data and improving data quality are addressed. Finally, some use cases are addressed for interlinking between the knowledge graph of the administrative districts and public open data. In particular, national administrative organisations are interlinked with the knowledge graph, and it demonstrates how the knowledge graph can be utilised for improving data identification and data quality.

Korean Contextual Information Extraction System using BERT and Knowledge Graph (BERT와 지식 그래프를 이용한 한국어 문맥 정보 추출 시스템)

  • Yoo, SoYeop;Jeong, OkRan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.123-131
    • /
    • 2020
  • Along with the rapid development of artificial intelligence technology, natural language processing, which deals with human language, is also actively studied. In particular, BERT, a language model recently proposed by Google, has been performing well in many areas of natural language processing by providing pre-trained model using a large number of corpus. Although BERT supports multilingual model, we should use the pre-trained model using large amounts of Korean corpus because there are limitations when we apply the original pre-trained BERT model directly to Korean. Also, text contains not only vocabulary, grammar, but contextual meanings such as the relation between the front and the rear, and situation. In the existing natural language processing field, research has been conducted mainly on vocabulary or grammatical meaning. Accurate identification of contextual information embedded in text plays an important role in understanding context. Knowledge graphs, which are linked using the relationship of words, have the advantage of being able to learn context easily from computer. In this paper, we propose a system to extract Korean contextual information using pre-trained BERT model with Korean language corpus and knowledge graph. We build models that can extract person, relationship, emotion, space, and time information that is important in the text and validate the proposed system through experiments.

Proximity based Circular Visualization for similarity analysis of voting patterns between nations in UN General Assembly (UN 국가의 투표 성향 유사도 분석을 위한 Proximity based Circular 시각화 연구)

  • Choi, Han Min;Mun, Seong Min;Ha, Hyo Ji;Lee, Kyung Won
    • Design Convergence Study
    • /
    • v.14 no.4
    • /
    • pp.133-150
    • /
    • 2015
  • In this study, we proposed Interactive Visualization methods that can be analyzed relations between nations in various viewpoints such as period, issue using total 5211 of the UN General Assembly voting data.For this research, we devised a similarity matrix between nations and developed two visualization method based similarity matrix. The first one is Network Graph Visualization that can be showed relations between nations which participated in the vote of the UN General Assembly like Social Network Graph by year. and the second one is Proximity based Circular Visualization that can be analyzed relations between nations focus on one nation or Changes in voting patterns between nations according to time. This study have a great signification. that's because we proposed Proximity based Circular Visualization methods which merged Line and Circle Graph for network analysis that never tried from other cases of studies that utilize conventional voting data and made it. We also derived co-operatives of each visualization through conducting a comparative experiment for the two visualization. As a research result, we found that Proximity based Circular Visualization can be better analysis each node and Network Graph Visualization can be better analysis patterns for the nations.

Development of Operation Aided System for Fault Diagnosis of Chemical Process (화학 공정의 이상 진단을 위한 조업 지원 시스템의 개발)

  • 모경주;정창욱;이기백;윤인섭
    • Journal of Intelligence and Information Systems
    • /
    • v.2 no.1
    • /
    • pp.11-26
    • /
    • 1996
  • 본 논문에서는 화학공정의 이상 진단을 위한 지식 기반 조업 지원 시스템의 개발에 관하여 살펴보고자 한다. 조업지원 시스템에서 가장 핵심적인 부분은 공정에 비정상 상황이 발생한 경우 이를 감지하고, 공정에 발생한 증상들을 분석하여 이상의 근본 원인을 찾아내는 작업-이상 진단이다. 이상 진단을 효과적으로 수행하기 위해서는 적절한 데이터의 해석이 매우 중요한데, 기존의 데이터 해석법들은 정상상태에 기반한 방법들을 동적거동을 효과적으로 표현하기에는 어려움이 많다. 본 연구에서는 RBF에 기반한 신경망을 사용하여 동적을 효과적으로 표현할 수 있는 정성적인 데이터 해석 모듈을 구축하였으며, 이 모듈에서는 공정에서 측정된 정략적인 센서값들을 정성적인 정보로 가공하여 이상진단 모듈에 제공한다. 본 연구에서는 효과적인 이상진단을 위하여 기존의 인과관계 그래프 모델(Cause Effect DiGraph)에 기반한 두가지 그래프 모델을 개발하였다. RCED(Reduced Caue Effect Digraph)는 공정의 측정 변수만으로 공정의 인과관계를 표현하는 오프라인으로 구축된 지식베이스 모델이며, PGTT(Pattern Graph Through Time)는 공정에서 발생한 증상간의 인과관계를 실시간으로 나타내는 동적인 모델이다. 이상, 신경망에 기반한 정성적인 데이터 해석 모듈과 이상진단 모듈을 전문가 시스템 도구인 G2를 DEC AlphaStation 상에서 폴리프로필렌 공정에 대한 조업지원전문가 시스템을 구축하고 이를 적용하여보았다.

  • PDF

A Study on the Automatic Synthesis of Signed Directed Graph Using Knowledge-based Approach and Loop Verification (지식 기반 접근법과 Loop 검증을 이용한 부호운향그래프 자동합성에 관한 연구)

  • Lee Sung-gun;An Dae-Myung;Hwang Kyu Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.53-58
    • /
    • 1998
  • By knowledge-based approach, the SDG(Signed Directed Graph) is automatically synthesized, which is commonly used to represent the causal effects between process variables. Automatic synthesis of SDG is progressed by two steps : (1)inference step uses knowledge base and (2)verification step uses Loop-Verifier. First, Topology and Knowledge Base are constructed by using the information on equipment. And then, Primary-SDG is synthesized by Character Pattern Matching between Variable-Relation-Representation generated by using Topology and Variable-Tendency-Data contained in Knowledge Base. Finally, a modified SDG is made after the Primary-SDG is verified by Loop-Verifier.

  • PDF

Performance Evaluation of Negative Sampling Methods in a Hyperedge Prediction Task (하이퍼엣지 예측 작업에서 네거티브 샘플링 기술의 성능 분석)

  • Daeun Lee;Songkyung Yu;Yunyong Ko;Sang-Wook Kim
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.527-530
    • /
    • 2024
  • 하이퍼그래프(hypergraph)는 실세계의 여러 객체가 함께 형성하는 복잡한 그룹 관계를 하이퍼엣지(hyperedge)로 정보 손실 없이 모델링할 수 있는 새로운 데이터 구조이다. 하이퍼엣지 예측(hyperedge prediction task)이란 하이퍼그래프로 표현된 실세계 네트워크에서 아직 관찰되지 않은 그룹관계 혹은 미래에 발생할 가능성이 높은 관계를 예측하는 것으로, 단백질 상호작용 분석(PPI), 추천시스템, 소셜 네트워크 분석 등 다양한 응용 분야에서 활용된다. 그러나, 하이퍼엣지 예측은 심각한 데이터 희소성 문제로 정확한 예측이 어렵다는 근본적인 한계를 지닌다. 이러한 한계를 완화하기 위해 다양한 네거티브 샘플링(negative sampling) 기술이 활용될 수 있는데, 아직까지 각 샘플링 기술이 하이퍼엣지 예측 정확도에 미치는 효과에 대해 충분히 연구되지 않았다. 본 논문에서는 하이퍼엣지 예측에 활용되는 다양한 네거티브 샘플링 방법의 효과를 분석한다. 실험 결과를 통해, 네거티브 샘플링 기법과 포지티브와 네거티브 하이퍼엣지 수의 비율에 따른 정확도 변화 양상을 분석한다.