• Title/Summary/Keyword: 과학적 모델

Search Result 4,110, Processing Time 0.037 seconds

Development of 3-D Scientific Visualization Tool of Atmospheric-Ocean-Astronomical Numerical Model Results (대기-해양-천문 수치모델 결과의 3차원 과학적 가시화 도구 개발)

  • Yuk, Jin-Hee;Kang, Ji-Sun;Joh, Minsu
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.293-294
    • /
    • 2017
  • 대기-해양-천문 수치 모델은 주로 3차원 모델이고, 3차원적 해석을 위해서는 사용자가 쉽게 접근하고 사용할 수 있는 3차원 과학적 가시화 도구가 필요하다. 이러한 요구에 대응하기 위하여 무료/오픈소스 기반의 3차원 과학적 가시화 도구인 VAPOR가 사용자 친화적인 방향으로 개발되고 있다. VAPOR는 대기모델 WRF, CAM, GRIMs, 해양모델 MOM4, POP, ROMS의 직접 가시화가 가능하며, VAPOR 자료 형식 변환 과정을 통하여 천문 분야 모델(RAMSES) 가시화도 가능하다. 매년 개발을 통하여, VAPOR는 사용자가 많이 사용하는 일반적인 2, 3차원 표출 기능과 단순 통계 기능을 제공하게 되었으며, 향후 다중 모델 동시 표출 기능도 제공할 계획이다.

  • PDF

The Change in Modeling Ability of Science-Gifted Students through the Co-construction of Scientific Model (과학적 모델의 사회적 구성 수업을 통한 과학 영재 학생들의 모델링 능력 변화)

  • Park, Hee-Kyung;Choi, Jong-Rim;Kim, Chan-Jong;Kim, Heui-Baik;Yoo, Junehee;Jang, Shinho;Choe, Seung-Urn
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • The purpose of this study is to investigate the changes of students' modeling ability in terms of 'meta-modeling knowledge' and 'modeling practice' through co-construction of scientific model. Co-construction of scientific model instructions about astronomy were given to 41 middle-school students. The students were given a before and after instruction modeling ability tests. The results show that students' 'meta-modeling knowledge' has changed into a more scientifically advanced thinking about models and modeling after the instruction. Students were able to be aware that 'they could express their thoughts using models', 'many models could be used to explain a single phenomena' and 'scientific models may change' through co-construction modeling process. The change in the 'modeling practice' of the students was divided into four cases (the level improving, the level lowering, the high-level maintaining, the low-level maintaining) depending on the change of pre-posttest levels. The modeling practice level of most students has improved through the instruction. These changes were influenced by co-construction process that provides opportunities to compete and compare their models to other models. Meanwhile, the modeling practice level of few students has lowered or maintained low level. Science score of these students at school was relatively high and they thought that the goal of learning is to get a higher score in exams by finding the correct answer. This means that students who were kept well under traditional instruction may feel harder to adapt to co-construction of scientific model instruction, which focuses more on the process of constructing knowledge based on evidences.

An Introductory Review for the Conceptualization of Elementary Teachers' Science PCK: Synthesized Perspective of the Teacher Professional Knowledge and Skills Model (Consensus Model) and the Revised Consensus Model (초등교사의 과학 PCK 개념화를 위한 시론(試論)적 고찰 - 교사의 전문지식과 기능 모델(합의 모델) 및 수정된 합의 모델의 복합적 관점 -)

  • Maeng, Seungho
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.1
    • /
    • pp.201-217
    • /
    • 2024
  • This introductory review study sought to conceptualize elementary school teachers' pedagogical content knowledge in science teaching (science PCK) by reinterpreting 11 science PCK research papers published in the Korean Journal Database from 2012 to 2023 based on the synthesized perspective of the model of teacher professional knowledge and skill (Consensus Model) proposed at the first PCK Summit in 2012 and the Revised Consensus Model (RCM) proposed at the second PCK Summit in 2016. Elementary teachers' science PCK was mainly analyzed based on Magnusson et al.'s (1999) PCK elements and described as the form of enacted PCK or personal PCK at the subject or discipline level. Personal PCK studies, which involved emotional factors, included the features of collective PCK from the RCM perspective. It was inferred that elementary school teachers' science PCK needs to be conceptualized by comprehensively considering the enacted PCK through individual teacher experiences and the collective PCK and personal PCK defined by experts.

Analysis of Scientific Models in the Earth Domain of the 10th Grade Science Textbooks (10학년 과학 교과서 지구 분야에 등장하는 과학적 모델 분석)

  • Oh, Phil-Seok;Jon, Won-Son;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.28 no.4
    • /
    • pp.393-404
    • /
    • 2007
  • The purpose of this study was to identity scientific models included in the Earth domain of the $10^{th}$ grade science textbooks. Three earth science-related chapters in each of 11 trade books were analyzed. A framework was developed and used to classify a scientific model from three different perspectives: medium of representation, method of representation, and mobility of a model. Results showed that the science textbooks utilized domain-specific models in which the nature of sub-areas of earth science was embedded. That is, the unit of 'Change of the Earth' included many iconic models that represented the inaccessible inner structure of the earth and the movement of the tectonic plates. These were also two-dimensional pictorial and static models. In the chapter of 'Atmosphere and Oceans', symbolic and diagrammatic models were dominant in use, which included weather maps and contour line graphs of sea surface temperature and salinity. The unit of 'Solar System and Galaxies' showed the highly frequent use of iconic and analogical models for the large-scale celestial objects and their movements. Implications for earth science education and relevant research were discussed.

A Temporal Data Model for Managing Scientific Database (과학 응용 데이터베이스 관리를 위한 시간지원 데이터 모델)

  • 김진호;옥수호
    • The Journal of Information Technology and Database
    • /
    • v.4 no.1
    • /
    • pp.51-64
    • /
    • 1997
  • 최근 컴퓨터 응용이 우주 항공, 천체 기상, 환경 관리, 공장 자동화(FA) 등의 분야로 확산되면서 물리, 화학, 생물, 기계 등의 과학 응용에서 생성되는 자료를 처리하는 기법에 대한 요구가 늘어나고 있다. 이들 과학 응용에서는 물리적 실험 장치나 측정 기계, 또는 시뮬레이션으로부터 데이터를 시간별로 측정(또는 수집)하므로 이들 과학 데이터는 시간에 종속된 데이터이다. 많은 과학 응용의 시간 지원 데이터는 과학 분야의 특성에 따라 매우 정밀한 시간 단위로 수집하기도 하고 실험 시작부터 경과된 상대적인 시간에 따라 데이터를 수집한다. 달력상의 시간을 사용하는 기존의 시간지원 데이터베이스는 과학 응용의 이러한 특징을 지원하지 못한다. 따라서 이 논문에서는 과학 실험 응용에서 요구하는 시간에 대한 특징과 요구 사항을 분석하고, 이들 과학 응용의 요구 사항을 만족하도록 확장한 새로운 시간 지원 데이터 모델을 제안한다. 이 모델에서는 실험이 경과된 상대적인 시간에 대한 데이터의 이력을 확장형 집합 개념을 사용하여 표현한다. 기존의 관계 데이터 모델과 유사하게, 이 모델은 집합 개념에 바탕을 두고 있으므로 데이터 모델과 그 연산의 의미를 쉽게 이해하고 사용할 수 있다는 장점이 있다.

  • PDF

The Contents of Practical Knowledge Realized in Two Science Teachers' Classes on Social Construction of Scientific Models (과학적 모델의 사회적 구성 수업에서 구현된 두 과학 교사의 실천적 지식의 내용)

  • Kim, So-Jung;Maeng, Seungho;Cha, Hyun-Jung;Kim, Chan-Jong;Choe, Seung-Urn
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.4
    • /
    • pp.807-825
    • /
    • 2013
  • This study investigated two science teachers' practical knowledge shaped during their science classes which intend to realize social construction of scientific models. The teachers' practical knowledge was qualitatively examined in terms of five content categories defined by Elbaz through the reflection-in-action based on video data of their teaching as well as the reflection-on-action based on their narratives and interview data obtained after their classes. The results shows: 1) two science teachers implemented their practical knowledge on appropriate subject matter knowledge when they provided students with scaffoldings to support building scientific models during the classes. 2) The teachers' knowledge about science curriculum played important roles to change the purposes of the classes from the transmission of difficult science concepts to the construction of scientific model appropriate to learning goals. 3) The teachers' implementation of pedagogical knowledge changed toward supporting students' group activities and model generations aligned to the intention of social construction of scientific models. 4) The teachers' practical knowledge about their 'selves' showed that a teacher's perception and implementation of his/her roles of helper, guide, or facilitator are important for students to construct scientific models through group activities. 5) The two teachers' practical knowledge the milieu of schooling is realized by their modes of interactions with student groups during their classes. Two teachers acted like a co-player with his students or like a coach to students near a playground. We discussed domain-specific characteristics about scientific model construction.

A Suggestion of Cognitive Model of Scientific Creativity (CMSC) (과학적 창의성 모델의 제안 -인지적 측면을 중심으로-)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.2
    • /
    • pp.375-386
    • /
    • 2004
  • Creative thinking alone can not lead to scientific creativity. Scientific knowledge and scientific inquiry skills are needed for scientific creativity. Focused only on cognitive aspect, I suggested a cognitive model of scientific creativity (CMSC) consisting of 3 components: thinking for scientific creativity, scientific knowledge contents, and scientific inquiry skills. Recently, many researchers have emphasized the various thinking for creativity as well as divergent thinking. Therefore, I suggested three types of creative thinking - divergent thinking, convergent thinking, and associational thinking - and discussed its rationale. Based on this model, an example of activity material for the scientific creativity was suggested. In the further research, based on CMSC, various activity types related to scientific creativity and concrete learning materials for scientific creativity will be developed.

Calibration of Pre-trained Language Model for Korean (사전 학습된 한국어 언어 모델의 보정)

  • Jeong, Soyeong;Yang, Wonsuk;Park, ChaeHun;Park, Jong C.
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.243-248
    • /
    • 2020
  • 인공 신경망을 통한 심층 학습 모델의 발전은 컴퓨터 비전, 자연언어 이해 문제들에서 인간을 뛰어넘는 성능을 보이고 있다. 특히 트랜스포머[1] 기반의 사전 학습 모델은 질의응답, 대화문과 같은 자연언어 이해 문제에서 최근 높은 성능을 보이고 있다. 하지만 트랜스포머 기반의 모델과 같은 심층 학습 모델의 급격한 발전 양상에 비해, 이의 동작 방식은 상대적으로 잘 알려져 있지 않다. 인공 신경망을 통한 심층 학습 모델을 해석하는 방법으로 모델의 예측 값과 실제 값이 얼마나 일치하는지를 측정하는 모델의 보정(Calibration)이 있다. 본 연구는 한국어 기반의 심층학습 모델의 해석을 위해 모델의 보정을 수행하였다. 그리고 사전 학습된 한국어 언어 모델이 문장이 내포하는 애매성을 잘 파악하는지의 여부를 확인하고, 완화 기법들을 적용하여 문장의 애매성을 확신 수준을 통해 정량적으로 출력할 수 있도록 하였다. 또한 한국어의 문법적 특징으로 인한 문장의 의미 변화를 모델 보정 관점에서 평가하여 한국어의 문법적 특징을 심층학습 언어 모델이 잘 이해하고 있는지를 정량적으로 확인하였다.

  • PDF

Narratives of Science Educators Concerning the Relationship between Theoretical Concepts and Modeling: Focus Group Discussions (과학적 이론과 모델의 관계에 대한 과학교육 연구자들의 이야기 - 포커스 그룹 토의 -)

  • Choi, Jinhyeon;Lee, Jong-Hyeok;Lee, Hyekeoung;Ryu, Kumbok;Kim, Kwan-Young;Jeon, Sang-Hak;Lee, Sun-Kyung
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.4
    • /
    • pp.538-559
    • /
    • 2023
  • In this study, the interplay between models and theories was explored through a series of focus group discussions (FGDs) involving five experts in science education. The FGDs were held seven times, beginning with the question of what is modeling in relation to models, which is a current area of research in science education. Throughout the discussion, several key issues regarding models and modeling were addressed, with a particular emphasis on their relationship to theory. A notable finding from this study is that the participants' discussions did not converge into a single viewpoint regarding the relationship between theory and models; instead, multiple related issues emerged, leading to attempts to reframe existing concepts and seek new understanding. The study findings relate to three main areas of inquiry: What is the meaning of models or modeling? What is the nature of the relationship between models and theories?, and Is modeling possible without a foundation in theory? Particularly, the relationship between models and theories was discussed in reference to the following points: 1) Is a model to be understood as derived from theory, and is modeling the application of theory to phenomena? 2) Can a model be inferred from theory? 3) Does modeling originate from a specific, structured foundational theory (a framework of empirical knowledge), or is it to be understood through the integration of various resources without explicit reference to a foundational theory? Based on the study outcomes, implications are presented for philosophy of science and for researchers and educators working in the realm of science education.

Assessment of an Aesthetic Model of Science for NOS Teaching (예비교사의 과학의 본성 지도를 위한 과학의 미학적 모델 측정 방안)

  • Kwon, Sunggi;Nam, Ilkyun
    • Journal of Science Education
    • /
    • v.44 no.2
    • /
    • pp.197-204
    • /
    • 2020
  • In order to teach the nature of science which is one of the goals of science education, the aesthetic model of science was developed into a two-dimensional model through theoretical reviews on the aesthetic aspect of science. We represented 10 kinds of scientific experiments that scientists thought are beautiful in the aesthetic space of science. This paper tried to represent the greatest and famous scientific experiments in the history of science into the aesthetic space of science to find the suitability or usefulness of that model. At the same time, we were able to develop measuring tools as the Likert-scale with pictures of scientific experiments. Through this, we propose various teaching approaches on the nature of science (NOS) based on the aesthetic model of science and the potential for utilization in measuring the effects of the ways of teaching NOS.