• Title/Summary/Keyword: 과학적 개념

Search Result 2,804, Processing Time 0.03 seconds

Analysis of Concept's Proximity of 7th Grade Students' Photosynthesis Concepts by the Level of Science Attitude (7학년 학생의 과학 태도 수준에 따른 광합성 관련 개념의 근접성 변화 분석)

  • Lee, Hee-Jeong;Kim, Youngshin
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.10
    • /
    • pp.1524-1536
    • /
    • 2012
  • Science attitudes affect the quality of learning, and they are considered as one of the major concerns in science education. It is necessary to analyze the proximity between concepts with science attitudes. Accordingly, this study was designed to analyze the proximity of the concept related to photosynthesis as it changed after class according to the levels of science attitudes. A survey on the concept of photosynthesis and science attitudes before and after class was conducted on 270 7th-grade students. The concept of photosynthesis was composed of 'the place of photosynthesis,' 'products of photosynthesis,' 'reactants of photosynthesis,' and 'environmental factors.' The proximity of the concept of photosynthesis was analyzed through the utilization of multidimensional scaling (MDS). The research results were as follows: (1) Students changed the proximity between concepts by acquiring concrete concepts through class. (2) The upper group in science attitudes tends to be closer to the proximity between scientific concepts through class, compared to the intermediate and lower groups. (3) In all students with entire levels of science attitudes, non-scientific concepts continued to exist even after class, and the non-scientific concepts were deemed to interfere with the proximity between scientific concepts related to photosynthesis. (4) Students turned out to be aware of the concepts related to each other in four areas associated with photosynthesis. That is, it can be said that students are closely aware of the place where photosynthesis can occur and the materials needed as well as materials generated as a result of photosynthesis and the materials needed in terms of concepts related to photosynthesis.

Preconceptions of Middle School Students Related to (화학 변화 개념에 대한 중학교 2학년 학생들의 선개념 조사 및 선개념 갈등상황 제시를 통한 개념변화 학습이론의 효과 분석)

  • Paik, Seoung Hye;Kang, Dae Hun;Kim, Hye Kyong;Chae, Woo Ki;Kwon, Kyoon
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.213-224
    • /
    • 1999
  • Preconceptions of middle school students related to chemical change the students are surveyed. The students are divided into experimental group that are learned by concept change theory teaching model, and control group that are learned by traditional teaching method based on science textbooks. After the planned classes, the tendencies of concept change of the two groups according to students learning motivations are analyzed. New teaching methods, which based on concept change learning model and students learning motivations, developed by this research. And the effects of the new teaching method are testified. As a result, it is proved that most of the students have a lot of preconceptions, and persist the wrong conceptions after the classes. This tendency is same in the control group and in the experimental group.

  • PDF

How the Science Gifted Connect and Integrate Science Concepts in the Process of Problem Finding (과학영재들이 문제발견 과정에서 나타내는 과학개념 연결방식과 융합적 사고의 특징)

  • Park, Mi-jin;Seo, Hae-Ae
    • Journal of Science Education
    • /
    • v.42 no.2
    • /
    • pp.256-271
    • /
    • 2018
  • The study aimed to investigate how the science gifted connect and integrate science concepts in the process of problem finding. Research subject was sampled from 228 applicants for a science gifted education center affiliated with a university in 2015. A creative problem solving test (CPST) in science, which administered as an admission process, was utilized as a reference to sample two groups. Sixty-seven students from top 30% in test scores were selected for the upper group and 64 students from bottom 30% in test scores were selected for the lower group. The CPST, which was developed by researchers, included one item about how to connect two science concepts among eight science concepts, sound, electricity, weight, temperature, respiration, photosynthesis, weather, and earthquake extracted from elementary science curriculum. As results, there were differences in choosing two concepts among four science major areas. The ways of connecting science concepts were characterized by three categories, relation-based, similarity-based, and dissimilarity-based. In addition, relation-based was characterized by attributes, means, influences, predictions, and causes; similarity-based was by attributes, objects, scientific principles, and phenomena, and dissimilarity-based was by parallel, resource, and deletion. There were significant (p<.000) differences in ways of connecting science concepts between the upper and the lower groups. The upper group students preferred connecting science concepts of inter-science subjects while the lower group students preferred connecting science concepts of intra-science subject. The upper group students showed a tendency to connect the science concepts based on similarity. In contrast, the lower group students frequently showed ways of connecting the science concepts based on dissimilarity. In particular, they simply parallelled science concepts.

Understanding Students' Conceptions in the Research on Conceptual Change in Science: from Misconception to Mental Model (과학개념변화 연구에서 학생의 개념에 대한 이해: 오개념(misconception)에서 정신모형(mental model)까지)

  • Park, Ji-Yeon;Lee, Gyoung-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.3
    • /
    • pp.621-637
    • /
    • 2004
  • In science education, the research on students' conceptions has been started in early 1970. From the early 1980, the research on students' conceptions stimulated the research on conceptual change. Recently, mental model has been a theoretical background in concrete arguments on "how students' conceptions are constructed or created?" Mental model has been studied early in cognitive psychology, and several researchers have studied it partially in science education area. In this study, we compared different theories that explained students' conceptions in, mainly, physics. Further we discussed the possibility of mental model as a theory that could integrate different explanations about students' conceptions from different theory.

Characteristics of High School Students 'Conceptual Understanding about Minerals and Rocks (광물과 암석에 대한 고등학생들의 개념 이해의 특징)

  • Wee, Soo-Meen;Cho, Hyun-Jun;Kim, Jun-Suk;Kim, Yun-Ji
    • Journal of the Korean earth science society
    • /
    • v.28 no.4
    • /
    • pp.415-430
    • /
    • 2007
  • The purpose of this study was to investigate the characteristics of high school students' conceptual understanding about minerals and rocks. A questionnaire was developed to examine students' conceptions of minerals and rocks. The data were collected from 93 students in 10th and 119 students in 11th grades in a high school. The result showed that students' understanding of minerals and rock was on the moderate level. The 10th grade students showed a relatively lower level of understanding about igneous rocks while the degree of the 11th graders' understanding about certain concepts related with melting point in the rock domain was a little bit lower than the average. Although the understanding levels between the two grade levels were similar, there were some items for which students understanding seemed to be more sophisticated with the grade. In the questions about the characteristic of basalt surface, however, the frequencies of non-scientific conceptions were not decreased, rather increased along with the grade. It was also found that the conceptions students acquired from other science lessons as well as earth science classrooms did rather interfere with students' construction of the scientific concepts of minerals and rocks even though sometimes they were helpful for learning. It was suggested that the teachers should understand that some specific terms in earth science have different meanings as they were used in other subjects.

Conceptual Understanding Process for Electric Circuit of Elementary Science-gifted Students using Dynamic Science Assessment (역동적 과학 평가를 통한 초등과학 영재들의 전기회로 개념 이해 과정 분석)

  • Hong, Hyun-Ju;Kim, Jung-Bog;Choi, Byung-Soon;Lee, Jung-Sook
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.3
    • /
    • pp.703-728
    • /
    • 2012
  • The purpose of this study was exploring instructive methods to make each gifted child's ability develop as more by selecting the dynamic method instead of existing static method in teaching and evaluating science-gifted students in elementary school and by analyzing conceptual change of electric circuit. In this research, 11 science-gifted students in primary school were chosen, and Dynamic Science Assessment(DSA) intended to comprehension of scientific electric circuit concept was performed as focusing on scaffolding aspects in order to find the transition process. And then, the features on transition process of students' concept were analyzed in quality. The results of the study were checked that the features of useful scaffolding input with respect to comprehending concepts of science gifted-students by using DSA. The less familiar to approach the subjects, the more presented numbers of scaffolding showed. As coming toward transition and same questions, scaffoldings (interactions) were declined because their level of transition was higher than before. Various ways were used in helping the students comprehend the concept on the method of connecting electric circuit and the emitting amount of current, which acted to adapt to daily life.

How Do the Prefrontal Lobes Mediate Scientific Reasoning and Conceptual Change in Adolescents ? (청소년들에게서 전두엽연합령은 어떻게 과학적 추론 및 과학개념 변화의 수행을 매개하는가?)

  • Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.3
    • /
    • pp.427-441
    • /
    • 1998
  • The present study tested the hypothesis that adolescents' performance on scientific reasoning tasks and their ability to change theoretical concepts during instruction are mediated by prefrontal-cognitive functions, such as planning and inhibiting. Subjects sampled from four Korean secondary schools were administered a test of scientific reasoning ability and tests of the prefrontal lobe functions. A series of lessons on theoretical concepts was also administered. Subjects' performance on the test of scientific reasoning and pre- to posttest gains in the concept test were used as dependent variables. This study found that students' planning and inhibiting abilities were highly correlated with and they significantly predicted their scientific reasoning ability and conceptual gains. Further, principal component analysis showed prefrontal lobe functions were categorized into two main components. Component 1, which was loaded by planning and working memory functions, was termed as the representing process. Component 2, which was loaded primarily by the inhibiting functions, was termed as the inhibiting process. Scientific reasoning and conceptual change were also linked to these two components, indicating that these cognitive processes are mediated by both representing and inhibiting processes.

  • PDF

Relation Between Degree of Consistency of Elementary Students' Preconceptions on the Brightness of Electric Bulb and Their Cognitive Conflict (전구의 밝기에 대한 초등학생들의 사전개념 일관성 정도와 인지갈등 정도와의 관계)

  • Jung Mee-young;Kim Kung-suk;Kwon Jaesoo
    • Journal of Korean Elementary Science Education
    • /
    • v.24 no.3
    • /
    • pp.259-267
    • /
    • 2005
  • This study was to investigate the elementary students' preconception on the brightness of electric bulb and degree of consistency on their preconceptions. Participants were 160 students of fifth graders in Seoul area. They had already teamed about the brightness of series circuit and parallel circuit of batteries. After they solved six problems in the same context, we provided them a pair of circuit which was an anomalous situation. And then they conducted CCLT (Cognitive Conflict Level Test). Elementary school students showed various preconceptions when they explained the light of bulb of two Simple electric Circuits. Many Students Consistently Showed the Scientific misconceptions like 'the light of bulb of two simple electric circuits was that the more batteries and the fewer bulbs were brighter.' The level of consistency that students presented scientific misconceptions was grouped all of four, such as 'high, middle, low, and nothing.' Therefore the higher scientific achievement they have, the higher consistency they have. As the students had high consistency level, they revealed high cognitive conflict level significantly. This high consistency will help them to change their preconception on the brightness of electric bulb and their cognitive conflict.

  • PDF

Analysis and Identification of Students' Threshold Concepts in High School Chemistry (학습경험을 바탕으로 학생들이 제시하는 고등학교 화학교과 내의 어려운 개념과 문지방개념 분석연구)

  • Park, Eun Jung
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.1
    • /
    • pp.126-129
    • /
    • 2014
  • Concerning the difficulty of learning science and reduced interest in science, the authors of this study searched for potential threshold concepts which are portals or gateways in the field of science (particularly chemistry). The nature of these concepts and how to overcome their troublesomeness were further questioned. For this study, 239 high school students completed chemistry II provided information about what difficult concepts and potential threshold concepts in high school chemistry are and how they affect learning chemistry. In particular, the mastery experience of the threshold concepts was explored in detail. Two, "mole and atomic structure" were selected as threshold concepts in chemistry. Not only as important but also as threshold, this study emphasized the importance of the two concepts in terms of features characterizing them as threshold concepts. In particular, the features objectify subjective experiences of students and provide information describing the scientific meaning and distinctive nature of threshold concepts in science. Along with the data from teachers, this study shows the integrative feature as key criteria for students to make meaningful understanding of the two threshold concepts.

Exploring Teaching Method for Productive Knowledge of Scientific Concept Words through Science Textbook Quantitative Analysis (과학교과서 텍스트의 계량적 분석을 이용한 과학 개념어의 생산적 지식 교육 방안 탐색)

  • Yun, Eunjeong
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.41-50
    • /
    • 2020
  • Looking at the understanding of scientific concepts from a linguistic perspective, it is very important for students to develop a deep and sophisticated understanding of words used in scientific concept as well as the ability to use them correctly. This study intends to provide the basis for productive knowledge education of scientific words by noting that the foundation of productive knowledge teaching on scientific words is not well established, and by exploring ways to teach the relationship among words that constitute scientific concept in a productive and effective manner. To this end, we extracted the relationship among the words that make up the scientific concept from the text of science textbook by using quantitative text analysis methods, second, qualitatively examined the meaning of the word relationship extracted as a result of each method, and third, we proposed a writing activity method to help improve the productive knowledge of scientific concept words. We analyzed the text of the "Force and motion" unit on first grade science textbook by using four methods of quantitative linguistic analysis: word cluster, co-occurrence, text network analysis, and word-embedding. As results, this study suggests four writing activities, completing sentence activity by using the result of word cluster analysis, filling the blanks activity by using the result of co-occurrence analysis, material-oriented writing activities by using the result of text network analysis, and finally we made a list of important words by using the result of word embedding.