• Title/Summary/Keyword: 과정모델

Search Result 8,476, Processing Time 0.052 seconds

CRFs versus Bi-LSTM/CRFs: Automatic Word Spacing Perspective (CRFs와 Bi-LSTM/CRFs의 비교 분석: 자동 띄어쓰기 관점에서)

  • Yoon, Ho;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-min;Namgoong, Young;Choi, Minseok;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.189-192
    • /
    • 2018
  • 자동 띄어쓰기란 컴퓨터를 사용하여 띄어쓰기가 수행되어 있지 않은 문장에 대해 띄어쓰기를 수행하는 것이다. 이는 자연언어처리 분야에서 형태소 분석 전에 수행되는 과정으로, 띄어쓰기에 오류가 발생할 경우, 형태소 분석이나 구문 분석 등에 영향을 주어 그 결과의 모호성을 높이기 때문에 매우 중요한 전처리 과정 중 하나이다. 본 논문에서는 기계학습의 방법 중 하나인 CRFs(Conditional Random Fields)를 이용하여 자동 띄어쓰기를 수행하고 심층 학습의 방법 중 하나인 양방향 LSTM/CRFs (Bidirectional Long Short Term Memory/CRFs)를 이용하여 자동 띄어쓰기를 수행한 뒤 각 모델의 성능을 비교하고 분석한다. CRFs 모델이 양방향 LSTM/CRFs모델보다 성능이 약간 더 높은 모습을 보였다. 따라서 소형 기기와 같은 환경에서는 CRF와 같은 모델을 적용하여 모델의 경량화 및 시간복잡도를 개선하는 것이 훨씬 더 효과적인 것으로 생각된다.

  • PDF

Development of SW Education Model based on HVC Learning Strategy for Improving Computational Thinking (컴퓨팅 사고 함양을 위한 HVC 학습전략 기반 SW교육모델 개발)

  • Sung, Younghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.5
    • /
    • pp.583-593
    • /
    • 2017
  • In order to overcome the difficulties of programming education for beginners, various research strategies such as UMC(Use-Modify-Create), design based learning, discovery learning and play learning are applied. In this study, we developed a HVC(History-VR Coding-Collaboration) learning strategy model for the improvement of learner's computational thinking. The HVC model is composed of a combination module of block type. We developed a 12th session storytelling - based virtual reality programming curriculum. As a result, HVC model and SW education program showed significant difference in improvement of learner's computational thinking.

Production Model Development of Mass Customized Clothing - Focused on Clothes for Middle-aged Women - (매스 커스터마이제이션 의류제품의 생산모델 개발 -중년여성복을 중심으로-)

  • 김소라
    • Journal of the Korean Society of Costume
    • /
    • v.52 no.3
    • /
    • pp.29-47
    • /
    • 2002
  • 이 연구에서는 대량생산의 장점인 낮은 가격대 창출과 주문생산의 장점인 고객지향을 추구하는 매스 커스터마이제이션(Mass Customization) 방식에 따른 의류제품의 생산모델을 개발하였다. 특히 체형이 매우 다양한 시기에 있어 이러한 고객지향적 의복이 더욱 필요한 중년여성들을 대상으로 하여 기성복에서 얻을 수 없는 인체적합도가 높은 의복을 생산할 수 있도록 하였다. 이 모델은 소비자 체형파악과 체형별 패턴제작의 어려움을 해결해주기 때문에 의류제조업체의 패턴제작과정을 용이하게 해주고, 모든 생산이 주문에 따라 이루어지므로 재고부담을 감소시키게 된다. 생산모델은 크게 5 단계로 나뉜다. 1 단계는 소비자가 제품에 대한 정보를 얻어 선택을 하는 단계이고, 2 단계는 소비자의 신체치수 계측 및 입력, 체형판별의 단계이다. 1) 단계에서는 이러한 내용을 포함하는 주문서를 작성하여 본사로 전송하고. 4 단계에서는 제품을 생산한다. 그리고 5 단계는 제품의 배송 단계이다. 이 연구에서 실질적으로 검증한 매스 커스터마이제이션 의류제품의 생산과정은 주문단계에서 패턴의 수정 단계까지이며, 이후의 마커제작에서 배송단계까지는 생산설비상의 문제 때문에 설명으로 제시하였다. 또한 매스 커스터마이제이션 의류제품에서 특히 중요한 단계는 고객에 대학 접근방법과 가봉 없이도 인체적합도가 높은 의복을 생산하는 것이므로 이 연구에서는 이를 중심으로 다루었다.

Scattered X-ray Correction Using a Modified Auto-Encoder (수정된 구조의 AE 모델을 이용한 X-ray 산란선 보정 기법)

  • Seo, Hyogyeong;Jeong, Jihoon;Lee, Donggyu;Han, Seunghwa;Kim, Hojoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.708-710
    • /
    • 2021
  • 본 논문에서는 X-ray 진단에서 산란선으로 인한 영상의 왜곡을 보정하는 방법으로서 수정된 구조의 AE(Auto-Encoder) 모델에 기반한 방법론을 제안한다. 기존 AE 모델의 계층에 따라 특징지도의 크기가 축소되고 팽창되는 과정에서 영상 복원에 필요한 정보가 소실될 가능성을 보완하기 위하여 동일 레벨 계층 간에 스킵 연결을 추가하였다. 또한 X-ray 영상에서 피사체 세부 부위의 두께와 밀도에 따라 산란선의 영향이 서로 다른 형태로 나타난다는 특성을 학습 과정에 효과적으로 반영하기 위하여 어텐션 모듈을 추가한 네트워크 구조를 도입하였다. 총 80 쌍의 흉부 X-ray 영상 데이터에 대하여 기존의 AE 모델을 사용한 방법 및 U-Net 과 FFA-Net 모델을 사용한 영상 복원 기법의 실험 결과를 상호 비교함으로써 제안된 방법의 타당성을 평가하였다.

A study on the didactical application of ChatGPT for mathematical word problem solving (수학 문장제 해결과 관련한 ChatGPT의 교수학적 활용 방안 모색)

  • Kang, Yunji
    • Communications of Mathematical Education
    • /
    • v.38 no.1
    • /
    • pp.49-67
    • /
    • 2024
  • Recent interest in the diverse applications of artificial intelligence (AI) language models has highlighted the need to explore didactical uses in mathematics education. AI language models, capable of natural language processing, show promise in solving mathematical word problems. This study tested the capability of ChatGPT, an AI language model, to solve word problems from elementary school textbooks, and analyzed both the solutions and errors made. The results showed that the AI language model achieved an accuracy rate of 81.08%, with errors in problem comprehension, equation formulation, and calculation. Based on this analysis of solution processes and error types, the study suggests implications for the didactical application of AI language models in education.

Explainable Animal Sound Classification Scheme using Transfer Learning and SHAP Analysis (전이 학습과 SHAP 분석을 이용한 설명가능한 동물 울음소리 분류 기법)

  • Jaeseung Lee;Jaeuk Moon;Sungwoo Park;Eenjun Hwang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.768-771
    • /
    • 2024
  • 인간의 산업 활동으로 인하여 동물들의 생존이 위협받으면서, 동물의 서식 분포를 효과적으로 파악할 수 있는 자동 야생동물 모니터링 기술의 필요성이 점점 더 커지고 있다. 그중에서도 동물 소리 분류 기술은 시각적으로 식별이 어려운 동물에게도 효과적으로 적용할 수 있는 장점으로 인하여 널리 사용되고 있다. 최근 심층학습 기반의 분류 모델들이 좋은 판별 성능을 보여주고 있어 동물 소리 분류에 많이 사용되고 있지만, 희귀종과 같이 개체 수가 적어 데이터가 부족한 경우에는 학습이 제대로 이루어지지 않을 수 있다. 또한, 이러한 모델들은 모델 내부에서 일어나는 추론 과정을 알 수 없어 결과를 완전히 신뢰하고 사용하는 데 제약이 따른다. 이에 본 논문에서는 전이 학습을 통해 데이터 부족 문제를 고려하고, SHAP을 이용하여 분류 모델의 추론 과정을 해석하는 설명가능한 동물 소리 분류 기법을 제안한다. 실험 결과, 제안하는 기법은 지도 학습을 한 경우보다 분류 성능이 향상됨을 확인하였으며, SHAP 분석을 통해 모델의 분류 근거를 이해할 수 있었다.

Depth-Based Recognition System for Continuous Human Action Using Motion History Image and Histogram of Oriented Gradient with Spotter Model (모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용한 깊이 정보 기반의 연속적인 사람 행동 인식 시스템)

  • Eum, Hyukmin;Lee, Heejin;Yoon, Changyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.471-476
    • /
    • 2016
  • In this paper, recognition system for continuous human action is explained by using motion history image and histogram of oriented gradient with spotter model based on depth information, and the spotter model which performs action spotting is proposed to improve recognition performance in the recognition system. The steps of this system are composed of pre-processing, human action and spotter modeling and continuous human action recognition. In pre-processing process, Depth-MHI-HOG is used to extract space-time template-based features after image segmentation, and human action and spotter modeling generates sequence by using the extracted feature. Human action models which are appropriate for each of defined action and a proposed spotter model are created by using these generated sequences and the hidden markov model. Continuous human action recognition performs action spotting to segment meaningful action and meaningless action by the spotter model in continuous action sequence, and continuously recognizes human action comparing probability values of model for meaningful action sequence. Experimental results demonstrate that the proposed model efficiently improves recognition performance in continuous action recognition system.

A Comparative Study of the Atmospheric Boundary Layer Type in the Local Data Assimilation and Prediction System using the Data of Boseong Standard Weather Observatory (보성 표준기상관측소자료를 활용한 국지예보모델 대기경계층 유형 비교 연구)

  • Hwang, Sung Eun;Kim, Byeong-Taek;Lee, Young Tae;Shin, Seung Sook;Kim, Ki Hoon
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.504-513
    • /
    • 2021
  • Different physical processes, according to the atmospheric boundary layer types, were used in the Local Data Assimilation and Prediction System (LDAPS) of the Unified Model (UM) used by the Korea Meteorological Administration (KMA). Therefore, it is important to verify the atmospheric boundary layer types in the numerical model to improve the accuracy of the models performance. In this study, the atmospheric boundary layer types were verified using observational data. To classify the atmospheric boundary layer types, summer intensive observation data from radiosonde, flux observation instruments, Doppler wind Light Detection and Ranging(LIDAR) and ceilometer were used. A total number of 201 observation data points were analyzed over the course 61 days from June 18 to August 17, 2019. The most frequent types of differences between LDAPS and observed data were type 1 in LDAPS and type 2 in observed(each 53 times). And type 3 difference was observed in LDAPS and type 5 and 6 were observed 24 and 15 times, respectively. It was because of the simulation performance of the Cloud Physics such as that associated with the simulation of decoupled stratocumulus and cumulus cloud. Therefore, to improve the numerical model, cloud physics aspects should be considered in the atmospheric boundary layer type classification.

A Studyon Implementation of Edge Detection Algorithms Based on fuzzy Membership Models (퍼지모델을 기반으로한 에지검출 알고리즘 구현에관한 연구)

  • Lee, Bae-Ho;Kim, So-Yeon;Kim, Kwang-Hee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.9
    • /
    • pp.2447-2456
    • /
    • 1998
  • Edge detection in the presence of noise is a well-known problem. this pper atempts to implement edge detection algorithms using fuzzy reasoning of fuzzy membership models. It examines an application-motived approach for solving the problem. Our approach is divided into three stages; fitering, segmentation and tracing. Filtering removes the noise from the original image and segmentation determines the edges and deects them. Finally, tracing assembles the edges into the related structure. Proposed method can be used effectively on these procedures by using fuzzy reasoning based on fuzzy models. In is compared with the previous edge detectio algorithms with fvorable results. Simulation results of the research are presented and discussed.

  • PDF

A Development of Algorithm and Programing Curriculum Model for Elementary School Students (초등학생을 위한 알고리즘 및 프로그래밍 교육과정 모델 개발)

  • Jeong, Youngsik
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.4
    • /
    • pp.459-466
    • /
    • 2015
  • The content of software education for elementary school students in the 2015 revisions to the national curriculum are not sufficient because class time dedicated to software education has been limited to 17 hours in fifth and sixth grades. In this study, I developed the algorithm and programming model for Korea. I analyzed domestic and international software education curricula as well as training platforms, such as Code.org, Blockly Games, and Entry. The suggested algorithm and programming framework is known as the Rainbow system, which is divided into 7 steps, 14 criteria, and 3 content areas--understanding the algorithm, the actual programming, and evaluation of the program. Using the Rainbow system, once students have completed a level they can be promoted to the next stage, regardless of their grade.