The needs of low-power embedded software are being increased. Along with the needs, the studies to predict the power consumption of embedded software are also being increased. Although existing studies for power analysis have been performed in source code-based, these code-based analysis have some shortages of long analysis time and much feedback efforts. Recently some studies of power analysis based on software models are prompted. This paper describes on the model-based approach using UML diagrams in embedded software development process. Specially we focus on the extension of OMG's MARTE Profile to support model-based analysis. The MARTE extension gives the possibility of power analysis using just UML diagrams without any other analysis model in embedded software development.
Prediction of fragmentation in bench blasting is one of the most important factors to establish the production plan. It is widely accepted that fragmentation could be accurately predicted using the Kuz-Ram model in bench blasting. Nevertheless, the model has an ambiguous or subjective aspect in evaluating the model parameters such as joint condition, rock strength, density, burden, explosive strength and spacing. This study proposes a new method to evaluate the parameters of Kuz-Ram model, and the predicted mean fragment sizes using the proposed method are examined by comparing the measured sizes in the field. The results show that the predictions using Kuz-Ram model with the proposed method coincide with field measurements, but Kuz-Ram model does not reflect the in-situ rock condition and hence needs to be improved.
The Transactions of the Korea Information Processing Society
/
v.3
no.6
/
pp.1453-1467
/
1996
A software development process is regarded as the process of building a series of various models. But developers had no method to verify these models which created subjectively. This paper has adopted initiative of verification tools to an early phase of analysis, whereas the existing verification tools have been used for implementations. This paper has defined a constraint language that expresses disciplines suggested in the system has been built upon the constraint language, which is proven to enhance the quality and consistency of models constructed by object model editor.
Proceedings of the Korean Information Science Society Conference
/
2007.06b
/
pp.117-122
/
2007
오늘날 소프트웨어의 설계 및 개발과 관련된 연구들은 많은 발전을 이루고, UML과 같은 의사소통을 위한 표준 언어가 만들어졌으며 많은 사람들이 관련 이론을 수용 및 활용하고 있다. 또한, 개발 프로세스에서의 설계 및 구현과 더불어 소프트웨어의 유지 보수 단계는 매우 중요하며 이러한 소프트웨어의 유지 보수를 위한 소프트웨어 검증에 관련된 연구는 근래에 많은 주목을 받고 있다. 하지만 소프트웨어 검증의 기술 개발 수준은 설계 및 개발에 비하여 많이 미흡한 실정이다. 소프트웨어 검증은 주로 검증하기 위한 입력 데이터를 산출하여 프로그램 실행을 통해 결과를 확인하는 동적 분석에 대한 연구가 주를 이룬다. 이러한 동적 분석은 원하는 산출물의 확인을 주목적으로 하며, 결과를 표현하는 데에는 따로 정형화된 형식이 필요 없다. 하지만 소스코드를 분석하여 소프트웨어의 구조 관계와 흐름을 파악하는 정적 분석은 분석 자료를 표현하는 표현 모델이 중요하다. 현재는 정적 분석의 결과를 표현하기 위한 공통의 표현 모델이 없기 때문에 검증 과정에서의 의사소통에서 의견의 불일치의 가능성이 있고, 설계 단계에서 사용되는 표현 모델로는 정적 분석 정보의 모든 내용을 표현하는데 한계가 있다. 따라서 본 논문에서는 소프트웨어의 정적 분석 과정을 분석 4계층으로 구분하고, 각 계층마다 분석 결과를 나타내기 위한 표현 모델을 제시한다. 그리고 이 표현 모델을 활용한 소프트웨어 분석 도구의 개발을 위해, 소스 분석 데이터를 가시적으로 표현하기 위한 자료구조의 설계에 대한 내용을 다룬다.
Deep learning has recently become one of the most actively researched technologies in the field of medical imaging. The availability of sufficient data and the latest advances in algorithms are important factors that influence the development of deep learning models. However, several other factors should be considered in developing an optimal generalized deep learning model. All the steps, including data collection, labeling, and pre-processing and model training, validation, and complexity can affect the performance of deep learning models. Therefore, appropriate optimization methods should be considered for each step during the development of a deep learning model. In this review, we discuss the important factors to be considered for the optimal development of deep learning models.
Many start-ups have many realistic hardships in getting management diagnosis about whether their business model are properly going. For this reason, there is the need for an easy and simple method that makes it possible to conduct a strategic management through the analysis and management diagnosis of the business model. The Business Model Canvas(BMC) has been popularized as a tool to help entrepreneurs describe, design, challenge, invent and pivot their business model. This model gives a framework to describe the most important building blocks(9 blocks) of existing business. Entrepreneurs can make their own business analyses and craft their own solutions through using this model. In this study, we conducted consulting by using the BMC on the NARUATO which is a small start-up in the healthy food industry. This case study can use as a learning material for entrepreneurship education.
Kim, Seong-Joon;Min, Seong-Hong;Lee, Dong-Cheon;Park, Jin-Ho;Lee, Im-Pyeong
Journal of Korean Society for Geospatial Information Science
/
v.15
no.2
s.40
/
pp.3-14
/
2007
This study proposes an automatic method to generate 3D building models using a draft map, which is an intermediate product generated during the map generation process based on aerial photos. The proposed method is to generate a terrain model, roof models, and wall models sequentially from the limited 3D information extracted from an existing draft map. Based on the planar fitting error of the roof corner points, the roof model is generated as a single planar facet or a multiple planar structure. The first type is derived using a robust estimation method while the second type is constructed through segmentation and merging based on a triangular irregular network. Each edge of this roof model is then projected to the terrain model to create a wall facet. The experimental results from its application to real data indicates that the building models of various shapes in wide areas are successfully generated. The proposed method is evaluated to be an cost and time effective method since it utilizes the existing data.
Recently developed compilers perform some optimizations in order to speed up the execution time of source program. These optimizations require the reordering of the sequence of program statements. This reordering does not give any problems in a single-threaded program. However, the reordering gives some significant errors in a multi-threaded program. State-of-the-art model checkers such as JavaPathfinder do not consider the reordering resulted in the optimization step in a compiler since they just consider a single memory model. In this paper, we develop a new verification tool to verify Java source program based on Java Memory Model. And our tool is capable of handling the reordering in verifying Java programs. As a result, our tool finds an error in the test program which is not revealed with the traditional model checker JavaPathFinder.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.133-133
/
2023
풍화작용에 의해 생성된 유사는 자연 매체에 의해 이동하고 하천에 도달하기 이전이나 이후 퇴적되며, 해당 과정 중에서 하상변동, 홍수위 상승, 제방 안정성, 두부 침식, 생태환경 변화, 수질문제 등 다양한 침식과 퇴적 관련 문제들이 발생한다. 이러한 유사 문제의 해결과 지속적인 하천관리를 위해서는 유사의 생성, 이송, 그리고 퇴적 과정에 대한 충분한 이해와 정량적인 유사량을 파악하는 것이 필수적이다. 다양한 연구들을 통해서 유사량을 정량적으로 파악하기 위해 여러 종류의 모델과 공식들이 제안 되어져 왔다. 그 중 경험적 모델의 경우 실제로 관측된 값을 기반으로 하며, 복잡한 계산이나 요구하는 자료가 다른 종류의 모델들 보다 적어 쉽게 접근이 가능하다. 이러한 경험적 모델은 유사에 영향을 주는 인자를 규명하거나 특정 유역이나 지역에서 이송 및 퇴적 되는 유사의 출처와 특성을 규명하는 초기 단계에서 유용하게 이용된다. 국내 하천의 경우 여름에 강우가 집중되고 대부분의 국토가 산지로 이루어져있어 상류에서 침식이 주로 발생한다. 또한, 본류 및 하류 지역의 하천은 유사의 퇴적이 주로 일어나서 하천의 형태와 물길이 형성된 충적 하천 형태로 발전 되어있기 때문에 국내 하천에서는 전반적으로 국부적이며 다양한 형태의 유사 관련 문제가 발생한다. 국내 하천에서 발생하는 유사 관련 문제를 해결하기 위해 국내 하천의 유사량을 추정하는 다양한 경험적 모델들이 지속적으로 개발되어왔다. 하지만 과거에 개발된 모델들의 경우 계측 자료가 충분하지 않은 시기에 개발 되었으며, 현재에는 활용하기 불가능하다. 본 연구에서는 국내 하천의 비유사량을 예측하는 동시에 국내 하천의 유사 특성을 이해하기 위해 과거에 국내 하천을 대상으로 비유사량을 추정하기 위해 개발되었던 경험적 모델을 개선하였다. 본 연구를 통해 기존 경험 모델의 경우 주기적인 업데이트가 필요함을 확인하였으며, 개발된 모델의 경우 국내 하천 유사 관리를 위해 미래 유사량 예측하는 등 다양한 방면으로 활용 관리가 가능할 것으로 보인다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.307-307
/
2022
최근 기후변화와 댐 상류 토지이용 변화 등과 같은 다양한 원인에 의해 댐 유입량의 변동성이 증가하면서 댐 관리 및 운영조작 의사 결정에 어려움이 발생하고 있다. 따라서 이러한 댐 유입량의 변동 특성을 반영하여 댐 유입량을 정확하고 효율적으로 예측할 수 있는 방안이 필요한 실정이다. 머신러닝 기술이 발전하면서 Auto-ML(Automated Machine Learning)이 다양한 분야에서 활용되고 있다. Auto-ML은 데이터 전처리, 최적 알고리즘 선택, 하이퍼파라미터 튜닝, 모델 학습 및 평가 등의 모든 과정을 자동화하는 기술이다. 그러나 아직까지 수문 분야에서 댐 유입량을 예측하기 위한 모델을 개발하는데 있어서 Auto-ML을 활용한 사례는 부족하고, 특히 댐 유입량의 예측 정확성을 확보하기 위해 High-inflow and low-inflow 의 변동 특성을 고려한 하이브리드 결합 방식을 통해 Auto-ML 기반 앙상블 모델을 개발하고 평가한 연구는 없다. 본 연구에서는 Auto-ML의 패키지 중 Auto-sklearn을 통해 홍수기, 비홍수기 유입량 변동 특성을 반영한 하이브리드 앙상블 댐 유입량 예측 모델을 개발하였다. 소양강댐을 대상으로 적용한 결과, 하이브리드 Auto-sklearn 앙상블 모델의 댐 유입량 예측 성능은 R2 0.868, RMSE 66.23 m3/s, MAE 16.45 m3/s로 단일 Auto-sklearn을 통해 구축 된 앙상블 모델보다 전반적으로 우수한 것으로 나타났다. 특히 FDC (Flow Duration Curve)의 저수기, 갈수기 구간에서 두 모델의 유입량 예측 경향은 큰 차이를 보였으며, 하이브리드 Auto-sklearn 모델의 예측 값이 관측 값과 더욱 유사한 것으로 나타났다. 이는 홍수기, 비홍수기 구간에 대한 앙상블 모델이 독립적으로 구축되는 과정에서 각 모델에 대한 하이퍼파라미터가 최적화되었기 때문이라 판단된다. 향후 본 연구의 방법론은 보다 정확한 댐 유입량 예측 자료를 생성하기 위한 방안 수립뿐만 아니라 다양한 분야의 불균형한 데이터셋을 이용한 앙상블 모델을 구축하는데도 유용하게 활용될 수 있을 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.