• Title/Summary/Keyword: 과염소산암모늄

Search Result 13, Processing Time 0.023 seconds

Preparation of Ultra Fine Ammonium Perchlorate Crystals (초미세 크기의 과염소산암모늄 결정체 제조)

  • 김준형;임유진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • The precipitation of ultra fine ammonium perchlorate(UFAP) crystals from the N-methyl pyrrolidone(NMP) solutions of ammonium perchlorate(AP) was studied. The characteristics of the precipitated crystals were investigated by means of scanning electron micrograph(SEM), X-ray diffraction(XRD), and thermogravimetric analysis(TGA). When chloroform, methylene chloride and toluene were the precipitants, the product crystals had a mean particle size less than 2$\mu\textrm{m}$. The crystallographical property and thermal decomposition behavior of the prepared UFAP were almost the same as those of the commercial AP.

Preparation of Cr2O3/AP Composites and their Thermal Decomposition Characteristics (Cr2O3/AP 복합체 제조 및 그 열분해 특성)

  • Jung, Jae-Yun;Kim, Jae-Kyeong;Shim, Hong-Min;Kim, Hyoun-Soo;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.145-153
    • /
    • 2015
  • $Cr_2O_3/AP$ (ammonium perchlorate) energetic composites were prepared by a method of solvent/anti-solvent. XRD analysis revealed that the crystalline structure of AP in $Cr_2O_3/AP$ composites is the same as that of pure AP. SEM photomicrograph shows that an average size of cuboid $Cr_2O_3/AP$ composites is approximately $2.5{\mu}m$. TGA analysis shows that the addition of submicron $Cr_2O_3$ particles into AP lowers the HTD (high-temperature decomposition) compared to that of neat AP and the activation energy of the $Cr_2O_3/AP$ composites was calculated by the isoconversional Starlink method. Considering changes in the activation energy, the decomposition reaction mechanism of AP was suggested as follows; the decomposition with the formation of nucleation sites renders formation of porous structure in the composites up to conversion of about 0.25 and after further conversion of over 0.3, it seems that decomposition reaction vigorously takes place rather than sublimation of AP.

The Measurement Technique of Burning Rate in Solid Proplellant at High Pressure (고체추진제의 고압 연소속도 측정기법)

  • Yoo, Ji-Chqang;Jung, Jung-Young;Yim, Yoo-Jin;Ko, Seung-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • The burning characteristics of HTPB/AP solid propellants were measured by closed bomb of internal volume of 200 cc and 700 cc up to 30,000 psia. The burning rates of closed bomb method showed good agreement with those of strand burner method between 1,000 psia and 5,000 psia, and the sharp increment of pressure exponent(n) around 6,000 psia as a result of testing in accordance with loading densities. The burning rate measured in 200 cc and 700 cc of internal volume of closed bomb agreed well without the relation of internal volume size.

Ion Exchange of Gold(III) from Ammonium Chloride Solution by Anionic Resins (염화암모늄용액에서 음이온 교환수지에 의한 금(III)의 이온교환)

  • Ahn, Hyeong Hun;Lee, Man Seung
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.48-54
    • /
    • 2018
  • Batch ion exchange experiments of Au(III) were performed from ammonium chloride solution by employing strong anionic exchange resins (Amberlite IRA 402 and AG 1-X8). Au(III) was well loaded into the two resins and the loading behavior of Au(III) into AG 1-X8 was superior to that into Amberlite IRA 402. The loading of Au(III) into AG 1-X8 followed Langmuir adsorption isotherm and the experimentally determined loading capacity was 355 mg/g. Au(III) was successfully eluted by $HClO_4$ from the loaded AG 1-X8 and the elution percentage of Au(III) increased with the concentration of $HClO_4$.

Recoil Effects of Neutron-irradiated Metal Salts

  • Lee, Byung-Hun;Lee, Jong-Du
    • Nuclear Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.99-105
    • /
    • 1980
  • The distribution of $^{55}$ Mn and $^{38}$ Cl recoil species following radiative neutron capture in permanganates, chlorates and perchlorates has been investigated by using ion-exchange chromatography method. The whole of the $^{55}$ Mn radioactivity in permanganates appeared in two valence states, the $^{38}$ Cl radioactivity in chlorates in two valence states and also the $^{38}$ Cl radioactivity in perchlorates in three valence states. Recoil energy was calculated. The internal conversion of $^{38}$ Cl isomer transition affects the retention value. The greater the radii of the cation, the higher is the probability of the recoil atom breaking through the secondary cage. In ammonium salt, the ammonium ion behaves as a reducing agent. Crystal structures with their greater free space have shown low retention.

  • PDF

Adsorption characterisctics of mixed resins for perchlorate ion (혼합수지를 이용한 과염소산 이온의 흡착 특성)

  • Park, Su-Min;Jeon, Byong-Hun;Jeong, Hyuk;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.429-436
    • /
    • 2010
  • The present research evaluates the efficiency of mixed resins between anion exchange resin and active carbon. We expected synergic effect from advantages of both adsorbents. Especially, this research focused on the removal of high cencentrated perchlorate ion from demilitarization solution. The total amount of the adsorbed perchlorate ion is increased considerably with mixed resins between mono functional anion exchange resin and granular active carbon from a single adsorbent. Results demonstated that this process not only improve the efficiency of adsorbing perchlorate, but save the time, space and cost for treating perchlotrate waste solution, because of reducing organic contaminant removing process. The interference effects from coexisting anions are not significant and can successfully applied to real demilitarization sample.

Perchlorate Ion-Selective PVC Membrane Electrode Based on the Quaternary Ammonium Salts (제4급 암모늄염을 이용한 과염소산 이온선택성 PVC막 전극)

  • 안형환;김용렬;강현춘;이한섭;이병철;강안수
    • Membrane Journal
    • /
    • v.3 no.3
    • /
    • pp.126-135
    • /
    • 1993
  • Perchlorate ion-selective PVC membrane electrode responsive to $10^{-6}M$ was developed by incorporating the ion-pair complex of perchlorate with the quaternary ammonium salts as a active material. The effect of chemical structure, the content of active material, the kinds of plasticizers, and the membrane thickness on the electrode characteristics such as the linear response range and Nernstian slope of the electrode were studied. With the results, the useful pH range and the selectivity coefficients to various interfering anions were compared and investigated. It was obtained that the effect of the chemical structure of an active material on the electrode characteristics was improved with increasing the alkyl chain length of the quarternary ammonium salts in the ascending order of Aliquat 336P, TOAP, TDAP, and TDDAP. The electrode characteristics was improved with the decrease of the active material content below the optimum membrane composition, and DBP was the best as a plasticizer. The optimum membrane composition was 9.09wt% of TDDAP, 30.3wt% of PVC, and 60.6wt% of ptasticizer(DBP). And the optimum membrane thickness was0.45mm at this composition. Under the above condition, thelinear response ranger was $10^{-1}~1.2 {\times} 10^{-6}M$, and the detection limit was $5.1{\times}10^{-7}M$ with the Nernstian slope of 57mV/decade of activity of perchlorate ion. The electrode potential was stable within the pH range from 4 to 11. The selectivity coefficient was as shown below : $SCN^->I^->NO_3^->Br^->ClO_3^->F^->Cl^->SO_4^{2-}$

  • PDF

Polarographic Behavior of Azo Series Organic Compounds (III). Reduction of Benzeneazoresorcinol in Acetonitrile (Azo계 유기화합물의 폴라로그래프법적 거동 (제3보). 아세토니트릴중에서 Benzeneazoresorcinol의 환원)

  • Heung Lark Lee;Zun Ung Bae
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.130-134
    • /
    • 1984
  • The polarographic behavior of benzeneazoresorcinol (BAR) in acetonitrile as an aprotic solvent has been investigated by direct current polarography and controlled-potential coulometry. The reduction of BAR in $1.0{\times}10^{-2}$M tetraethylammonium perchrolate solution proceeds along four one-electron steps to give the corresponding amine compounds. Each reduction wave was considerably diffusion-controlled and not completely reversible.

  • PDF

Polarographic Behavior of Azo Series Organic Compounds (II). Reduction of 1-(2-Pyridylazo)-2-naphthol in Acetonitrile (Azo계 유기화합물의 폴라로그래프법적 거동 (제2보). 아세토니트릴 중에서 1-(2-Pyridylazo)-2-naphthol의 환원)

  • Heung Lark Lee;Zun Ung Bae
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.24-30
    • /
    • 1983
  • The polarographic behavior of 1-(2-pyridylazo)-2-naphthol (PAN) in acetonitrile as an aprotic solvent has been investigated. The reduction of PAN in $10^{-2}$ molarity of tetraethyl-ammonium perchlorate acetonitrile solution proceeds along two one-electron steps to give the corresponding hydrazo compound. Every reduction wave was diffusion controlled and considerably reversible. The reduction mechanism of PAN in acetonitrile is estimated as follows;

  • PDF

A phase transformation model for burning surface in AP/HTPB propellant combustion (AP추진제의 연소면 형성 및 전파 모델링 연구)

  • Jung, Tae-Yong;Doh, Young-Dae;Yoo, Ji-Chang;Yoh, Jack Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • In the solid rocket propellant combustion, the dynamic phase change from solid to liquid to vapor occurs across the melt layer. During the surface burning, liquid and gas phases are mixed in the intermediate zone between the propellant and the flame to form micro scale bubbles. The known thickness of the melt layer is approximately 1 micron at $10^5$ Pa. In this paper, we present a model of the melt layer structure and the dynamic motion of the melt front derived from the classical phase field theory. The model results show that the melt layer grows and propagates uniformly according to exp(-1/$T_s$) with $T_s$ being the propellant surface temperature.