• Title/Summary/Keyword: 과압

Search Result 102, Processing Time 0.027 seconds

가압경수로의 저온과압사고에 대한 안전성 분석 방법 개발

  • 김요한;전황용;이창섭;김경두;장원표
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.369-375
    • /
    • 1996
  • 가압경수로의 기동과 냉각시 발생할 수 있는 저온과압사고는 원자로 압력용기의 취성파괴를 유발할 위험이 있다. 따라서 발전소는 저온과압을 방지하기 위해 기술지침서의 온도-압력 곡선을 토대로 운전온도에 따른 압력경계를 제한하고 있으며, 과압방지설비로 가압기 PORV나 잔열제거계통의 방출밸브를 갖추고 있다. 미 NRC에서는 GL90-06을 통해 저온과압사고에 대한 안전성 분석을 권고하고 있으며, 이에 따른 표준 기술 지침서를 제시하였다. 국내 가동 원자력발전소중 영광 3,4호기 이후에는 설계시 이를 반영하였으나, 타 발전소에는 반영되질 않았다. 이 논문에서는 이들 운전중인 가압경수로의 저온과압사고에 대한 안전성 분석을 수행하기 위해 개발한 안전성 평가 방법을 제시하였다.

  • PDF

RCS Overpressure Protection Analysis Using SEBIM POSRV (SEBIM POSRV를 이용한 원자로 냉각재계통의 과압보호 해석)

  • Kim, Chong-Hoon;Seo, Jong-Tae
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • The overpressure protection system for PWR should be designed with sufficient capacity to limit the pressure to less than 110% of the reactor coolant system design pressure during the most severe abnormal operational transient. In this study, the feasibility of adopting the SEBIM POSRV instead of the current spring loaded pop-opening safety valves to the ABB-CE designed 2825 MWt PWR is investigated for its overpressure protection capability. The required SEBIM POSRV size as well as its opening/closing setpoints are determined through a series of computer analyses using the LTC code which has been used for the overpressure protection analysis for Yonggwang units 3&4. The analysis results show that the overpressure protection system with monobloc SEBIM POS-RV can maintain the RCS pressure below 110% of the design pressure demonstrating its overpressure protection capability for the ABB-CE designed 2825 MWt PWRs.

  • PDF

Evaluation of Peak Overpressure and Impulse Induced by Explosion (폭발에 따른 최대과압 및 충격량 평가)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.28-34
    • /
    • 2016
  • Empirical model, phenomenological model, and CFD model have been used to evaluate the blast effects produced by explosion of explosives, flammable gas and liquid or dust. TNT equivalence method which is one of empirical models has been widely used as it is simple. In this study, new peak overpressure-scaled distance and scaled impulse-scaled distance equations are induced through fitting data from the curves given by TNT equivalence method. If the TNT equivalent mass is calculated, it is possible to estimate the peak overpressure and impulse using the regression equations. Differences of peak overpressure with yield factor which is a component of TNT equivalence method are found to be great in near-by distances from explosion source where the increase in overpressure is very steep, but the differences are getting smaller as the distances increase.

LPG충전소의 BLEVE현상에 따른 피해 분석

  • Jo, Sam-Gyu;Kim, Tae-Hwan;Ham, Eun-Gu
    • LP가스
    • /
    • s.67
    • /
    • pp.26-32
    • /
    • 2000
  • 도심지내에 위치한 부천 LPG충전소 사고 조사를 통하여 가장 피해효과가 큰 탱크로리 폭발에 따른 결과를 분석하였다. 분석범위는 BLEVE 현상에 의한 방출열과 과압이 충전소 주변에 위치한 구조물이나 인체에 미치는 영향을 대상으로 실제 현장조사를 통하여 수집된 피해결과와 이론적인 모델(PHAST-Process Hazad Analysis Software Tools) 분석 결과를 비교하였다. 부천 LPG 충전소 폭발 사고의 피해효과는 방출열의 경우 두 가지 모두 큰 차이를 보이지 않았으나 과압의 경우, 실제 피해는 이론적 모델 분석결과의 약 15%정도에 해당하는 축소된 거리에서 나타났다. 또한 충전소 인근에 위치한 구조물에 대한 피해효과는 부분적으로 과압에 의한 균열 및 붕괴 현상보다는 열 효과에 의한 콘크리트 강도 저하와 성상변화가 크게 나타났다.

  • PDF

Development of Relief Valves for the Domestic Gas-fired Hot Water Boilers (가정용 가스보일러 과압방지밸브의 개발 연구)

  • Kim Young Gyu;Kwon Jeong Rock;Kim Ji Yoon;Suh Joon Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.63-68
    • /
    • 2000
  • We have developed a new relief valve which is a safety device for the domestic gas-fired hot water boilers. The relief valve has been designed to expand the inner diameter of the inlet, the outlet and the seat of the valve considering the relief capacity, and also to separate the spring from the room heating water. Therefore, we could minimize the adhesion and/or obstruction of the inlet and the corrosion phenomena of the spring which used to be the problem of the conventional relief valves. Test results of the developed relief valve showed that the performance of the opening pressure, reseating pressure, tightness, endurance were excellent, and the operating boiler with developed relief valve was evaluated as very good. The standardization and application of the relief valve can provide the advantage of component exchange and easy maintenance and repair.

  • PDF

Effects of Explosion on Structures (폭발이 구조물에 미치는 영향)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.37 no.4
    • /
    • pp.10-16
    • /
    • 2019
  • Information on overpressure, positive phase duration, and impulse are required to assess the effects of shock waves or pressure waves on the structure. In this study, the overpressure and positive phase duration were determined by applying the Multi-Energy Method, which is found to be effective in analyzing the explosion of vapor clouds. Based on the total heat of combustion estimated in the cyclohexane vapor cloud explosion in the Nypro Ltd(UK), overpressure and positive phase duration at the distance of 40, 80, 120, 160, 200, 240, 280, 320, 360(m) from the source of explosion were evaluated. Overpressure was shown to decrease exponentially and positive phase duration increased almost linearly with distance. A probit function was used to assess the probability of damages for the structures at each distance using the overpressure and impact obtained at the above mentioned distances. The Analyses of probability of damages have shown that there is a high probability of collapse at distances within 120m, major damage to structures within 240m, and minor damage and breakage of window panes of structures occur over the entire distances.

The Experimental Study on the Leakage of Automatic Pressure Differential · Overpressure Control Dampers (자동차압 · 과압조절형댐퍼의 누설량 실험 연구)

  • Shin, Pyung-Shik;Kim, Hak-Joong
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.71-75
    • /
    • 2015
  • Recently, Since buildings are bigger and higher, the damage of human life can be increased by fire flame and smoke in fire. Smoke control system is necessary to decrease this damage. Therefore, Air supply pressurization smoke control system is applied to vestibule of escape stairway. NFSC requires pressure differential of 40 Pa~60 Pa, but pressure differential is over 60 Pa in the field. It is known that the cause of this over pressure differential is much leakage of damper. Over pressure differential can bad effect to escaper by pressurizing the door. Analyze the real leakage of damper by testing for identifying this problems. The result of testing, leakage is $0.090m^3/s{\sim}0.154m^3/s$. It is necessary to limit the leakage of dampers for safe of escapers.

Numerical Study on Effect of Mesh Size on Vibration and Overpressure Propagation Induced by Underwater Blasting (수중발파로 인한 과압 및 진동 전파에서 메쉬크기의 영향에 대한 수치해석 연구)

  • Jeong, Hoyoung;Son, Hanam;Kim, Suhan;Kim, Yeolwoo
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.578-592
    • /
    • 2021
  • This study performed to investigate the propagation characteristics of overpressure, impulse, vibration in underwater blasting. The difference between air blasting and underwater blasting is that noise and vibration propagate through water as a medium. In some cases, the noise and vibration propagates through various media (rock, water, air, etc.). In this study, the underwater blasting was simulated using AUTODYN, and the propagation characteristics of overpressure, impulse and vibration induced by blasting were analyzed. We mainly focused on the effect of mesh size on the overpressure, impulse and peak particle velocity from the underwater blasting simulation. The numerical results indicated that the overpressure and peak particle velocity tended to decrease as the mesh size increased, while the impulse increased with the mesh size. The results also indicated that the mesh dependence varied depending on the explosive charge and scaled distance.

Assessment of the Applicability of Vapor Cloud Explosion Prediction Models (증기운 폭발 예측 모델의 적용성 평가)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.44-53
    • /
    • 2022
  • This study evaluates the applicability of the TNT Equivalency Method, Multi-Energy Method, and Baker-Strehlow-Tang (BST) Method, which are blast prediction models used to determine the overpressure of blast wave generated from vapor cloud explosion. It is assumed that the propane leaked from a propane storage container with a capacity of 2000 kg installed in an area where studio houses and shopping centers are concentrated causes a vapor cloud explosion. The equivalent mass of TNT calculated by applying the TNT Equivalency Method is found to be 4061 kg. Change of overpressure with the distance obtained by the TNT Equivalency Method, Multi-Energy Method, and BST Method is rapid and the magnitude of overpressure obtained by the TNT Equivalency Method and BST method is generally similar within 100 m from explosion center. As a result of comparing the overpressure observed in the actual vapor cloud explosion case with the overpressure obtained by applying the TNT Equivalent Method, Multi-Energy Method, and BST Method, the BST Method is found to be the best fit. As a result of comparing the overpressure with the distance obtained by each explosion prediction model with the damage criteria for structure, it is estimated that the structure located within 90 m from explosion center would suffer a damage more than partial destruction, and glass panes of the structure separated by 600 m would be fractured.

The Experimental Study on the Leakage of Automatic Pressure Differential·Overpressure Control Dampers by Increasing the Number of Damper Operation (자동차압·과압조절형댐퍼의 개폐동작횟수 증가에 따른 누설량 실험 연구)

  • Shin, Pyung-Shik;Kim, Hak-Joong
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.56-61
    • /
    • 2016
  • Recently, Since buildings are bigger and higher, the damage of human life can be increased by fire flame and smoke in fire. Smoke control system is necessary to decrease this damage. Therefore, Air supply pressurization smoke control system is applied to vestibule of escape stairway. NFSC requires pressure differential of above 40 Pa, but pressure differential is excessively overpressure in the field. It is known that the cause of this over pressure differential is much leakage of damper. Over pressure differential can bad effect to escaper by pressurizing the door. Analyze the real leakage of damper by increasing the number of dampers operation for identifying this problems. The result of testing, the leakage has difference between new dampers and increased the number of operation dampers. As the static preassure increase, the leakage difference increase. Comparison with preceding study, this result has similar linear tendency.