• Title/Summary/Keyword: 과망간산

Search Result 19, Processing Time 0.027 seconds

Oxidative Degradation Kinetics of Trichloroethylene in Groundwater by Permanganate (과망간산을 이용한 지하수내 TCE 분해의 동력학적 해석)

  • Yang, Seung-Guan;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.397-401
    • /
    • 2006
  • A laboratory study was conducted to evaluate the kinetics of oxidation of trichloroethylene(TCE) in groundwater by potassium permanganate($KMnO_4$). Consumption of permanganate by TCE and aquifer material was also evaluated to obtain an appropriate injection rate of $KMnO_4$. TCE degradation by $KMnO_4$ in the absence of aquifer material was effective with a pseudo-first order rate constant, $k_{obs}=5.24{\times}10^{-3}s^{-1}\;at\;KMnO_4=500mg/L$. TCE oxidation by $KMnO_4$ was found to be second order reaction and the rate constant, $k=0.65{\pm}0.08M^{-1}s^{-1}$. Meanwhile, aquifer materials from the field site were actively reacted with permanganate, resulting in the significant consumption of $KMnO_4$. It might be attributed to the existence of metal oxides in the aquifer materials.

Spectrophotometric Investigation of Oxidation of Cefpodoxime Proxetil by Permanganate in Alkaline Medium: A Kinetic Study (알칼리성 용매에서 과망간에 의한 세프포독심 프록세틸의 산화의 분광광도법적 조사: 속도론적 연구)

  • Khan, Aftab Aslam Parwaz;Mohd, Ayaz;Bano, Shaista;Siddiqi, K. S.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.709-716
    • /
    • 2009
  • A Kinetics pathway of oxidation of Cefpodoxime Proxetil by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically. The reaction showed first order kinetics in permanganate ion concentration and an order less than unity in cefpodoxime acid and alkali concentrations. Increasing ionic strength of the medium increase the rate. The oxidation reaction proceeds via an alkali-permanganate species which forms a complex with cefpodoxime acid. The latter decomposes slowly, followed by a fast reaction between a free radical of cefpodoxime acid and another molecule of permanganate to give the products. Investigations of the reaction at different temperatures allowed the determination of activation parameters with respect to the slow step of proposed mechanism and fallows first order kinetics. The proposed mechanism and the derived rate laws are consistent with the observed kinetics.

Study on Chemical Decontamination Process Based on Permanganic Acid-Oxalic Acid to Remove Oxide Layer Deposited in Primary System of Nuclear Power Plant (계통 내 침적된 산화막 제거를 위한 과망간산/옥살산 기반의 화학제염 공정연구)

  • Kim, Chorong;Kim, Haksoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.15-28
    • /
    • 2019
  • In accordance with the decommissioning plan for the Kori Unit 1 NPP, the reactor coolant system will be chemically decontaminated as soon as possible after permanent shutdown. This study developed the chemical decontamination process though the development project of decontamination technology of reactor coolant system and dismantled equipment for NPP decommissioning, which has been carried out since 2014. In this study, Oxidation/reduction process was conducted using system decontamination process development equipment of lab scale and was divided into unit and continuous processes. The optimal process time was derived from the unit process, and decontamination agent and the number of process were derived through the continuous processes. Through the unit process, the oxidation process took 5 hours and the reduction process took 4 hours. As optimum decontamination agent, the oxidizing agent was $200mg{\cdot}L^{-1}$ Permanganic acid + $200mg{\cdot}L^{-1}$ Nitric acid and the reducing agent was $2000mg{\cdot}L^{-1}$ Oxalic acid. In the case of the number of processes, all oxide films were removed during the two-cycle chemical decontamination process of STS304 and SA508. In the case of Alloy600, all oxide films were removed when chemical decontamination was performed for three cycles or more.

Recoil Effects of Neutron-Irradiated Metal Permanganates (중성자조사 금속 과망간산염의 반조효과)

  • Lee, Byung-Hun;Kim, Jung-Gwan
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 1988
  • The chemical effects resulting from the capture of the thermal neutron by manganese in various crystalline permanganates, that is, potassium permanganate ammonium permangante and barium permanganate, have been investigated. The effect of pH of solvent on the distribution of radioactive manganese chemical species, that is, cationic $^{56}$ Mn, $^{56}$ MnO$_2$ and $^{56}$ MnO$_4$$^{[-10]}$ produced in the permanganates by $^{55}$ Mn(n, r) $^{56}$ Mn reaction was studied by using various adsorbents and ion-exchanger, that is, zeolite A-3, kaolinite, alumina, manganese dioxide and Dowex-50 The distribution of radioactive MnO$_4$$^{[-10]}$ in kaolinite and alumina has higher than that in other adsorbents and ion-exchanger at a representative pH value of 4, 7 and 9, respectively. The yield of radioactive MnO$_4$$^{[-10]}$ is higher at pH 4 End pH 9 than at pH 7. The thermal annealing behavior of recoil manganese atoms produced in the permanganates by $^{55}$ Mn(n, r) $^{56}$ Mn reaction was also studied. The retention of MnO$_4$$^{[-10]}$ in the thermal annealing is increased as annealing temperature increases when it was treated at 10$0^{\circ}C$ and 13$0^{\circ}C$. The recoil effect of permanganates was explained by the hot zone model.

  • PDF

A New Sample Preparation Technique for SEM Observation of Polyolefin Microstructure (주사전자현미경상에서의 고분자 미세구조 관찰)

  • Park, Je-Myung
    • Applied Microscopy
    • /
    • v.29 no.4
    • /
    • pp.405-415
    • /
    • 1999
  • In general, transmission electron microscopy (TEM) is usually used in the investigation of polymer microstructure. Microtoming, solution casting, staining and carbon replica method are frequently introduced to the study of the polymer morphology with TEM, however the sample preparation procedure of those techniques is very difficult, and it takes a long time. The purpose of this study is to develop a new sample preparation technique which is suitable for the investigation of the various shapes and species of polyolefin microstructure by scanning electron microscopy (SEM). By modifying the conventional chemical etching method, we developed a new chemical etching technique and sample preparation procedure that are suitable for SEM study of polymer microstructure. In this study the permanganate etching method is introduced and the optimum etching condition are determined by simply adjusting the etchant formulation, concentration and etching time. This technique has shown good reproducibility and it's morphological results agree well with other works on various types of microstructures such as spherulite characterization of isotatic polypropylene $(\alpha/\beta)$, polyethylene and poly-propylene copolymer characterization, and the study of lamellar growth pattern of unsheared or oriented materials. This technique has also been applied to the industrial fields for characterization of the polyolefin film, automobile products and the others.

  • PDF

Chemical Effects of Nuclear Transformations in Metal Permanganates (금속 과망간산염의 핵변환에 의한 화학적 효과)

  • Lee, Byung-Hun;Kim, Bong-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 1986
  • The chemical effects resulting from the capture of the thermal neutrons by manganese in different crystalline permanganates, that is, potassium permanganate, sodium permanganate, silver permanganate, barium permanganate and ammonium permanganate, have been investigated. The distribution of radioactive manganese formed has been determined by using different absorbents and ion-exchangers, that is, manganese dioxide, alumina, Zeolite A-3, Kaolinite and Dowex-50. The distribution of radioactive manganese in various adsorbents and ion-exchangers has almost similar result for each permanganate. The affinity for radioactive manganous ion is greatest for Dewex-50. A significant increase of retention is shown through the thermal annealing and the retention depends on the first ionization potential of metal ion in permanganates.

  • PDF

Chemical Oxygen Demand based on Spectrophotometric Measurement of Permanganate (흡광도 측정에 의한 화학적 산소 요구량)

  • Myung-Zoon Czae;Suw-Young Ly;Mi-Kyung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.12
    • /
    • pp.880-884
    • /
    • 1994
  • An indirect spectrophotometric method, presumably heretofore unmentioned, for the rapid determination of COD in the presence of chloride of high concentration is described. The alkaline sample is refluxed to react with a definite amount of permanganate, present in excess. A photometric measurement at 535 nm for the extent of the fading of the permanganate color after refluxing completes the procedure. The optimum conditions which give the absorbance-concentration plot the maximum linearity and slope in the range of 0∼5 ppm COD are as follows: reflux at $100\circC$ for 10 min in the presence of 0.15 mM permanganate and 0.2% NaOH with a sample size of 5 ml. An overall running time was less than 15 min. The t-test reveals that the proposed method is not significantly different from the official method.

  • PDF

A Rapid COD Test Procedure for Alkaline Permanganate Value Determination (알칼리성 $100^{\circ}C$에서 화학적 산소요구량 신속정량법)

  • Czae, Myung-Zoon;Ly, Suw-Young;Kim, Mi-Kyung
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.167-170
    • /
    • 1995
  • A simple and rapid permanganate value test procedure for the estimation of COD, based on the photometric measurement of the remained permanganate after the color bleaching by oxygen demand organics during digestion, has been described. Optimized conditions were 1% NaOH, 0.6mM $KMnO_4$, with a closed reflux in the boiling water bath for 90 sec using sample size of 5mL.

  • PDF

과망간산을 이용한 지하수내 TCE 제거효과 평가

  • Yang Seung-Gwan;Go Seok-O
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.53-56
    • /
    • 2005
  • A Laboratory study was conducted to evaluate the kinetics of oxidation of trichloroethylene (TCE) in groundwater by potassium permanganate $(KMnO_4)$, Consumption of permanganate by TCE and aquifer materials was also evaluated to obtain an appropriate injection rate of $KMnO_4$. TCE degradation by $KMnO_4$ in the absence of aquifer material showed effective with pseudo-first order rate constant, $k_{obs}=1.8110^{-3}\;s^{-1}\;at\;KMnO_4=500mg/L$. TCE oxidation by $KMnO_4$ was found to be second order reaction and the rate constant, $k=0.65{\pm}0.08\;M^{-1}s^{-1}$, was independent of pH changes. $KMnO_4$ consumption rate by groundwater sampled from field site was not significant, indicating that groundwater containing negligible amount of dissolved organic matter does not have any influence on the $KMnO_4$ degradation. Meanwhile, aquifer materials from field site were actively reacted with permanganate, resulting in the significant consumption of $KMnO_4$. It might be attributed to the existence of metal oxides in aquifer materials, Based on the rate constants obtained from this study, appropriate injection rate of permanganate and TCE removal rate in groundwater could be estimated.

  • PDF