• Title/Summary/Keyword: 과립화

Search Result 142, Processing Time 0.022 seconds

Effect of Supplying Volume and Frequency of Nutrient Solution on Growth and Fruit Quality of Blueberry (블루베리 양액재배시 공급량 및 공급횟수가 수체생육 및 과실품질에 미치는 영향)

  • Cheon, Mi Geon;Lee, Young Suk;Chung, Yong Mo;Kim, Hee Dae;Hong, Kwang Pyo;Kumarihami, H.M. Prathibhani C.;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.447-453
    • /
    • 2019
  • In this study, the effect of supplying volume and frequency of a nutrient solution consisted with $NO_3-N$ 4.6, $NH_4-N$ 3.4, $PO_4-P$ 3, K 3, Ca 4.6 and Mg $2.2mmol{\cdot}L^{-1}$ on growth and fruit quality of 'Duke' blueberry was investigated. Three years old 'Duke' blueberry bushes cultivated in containers ($60{\times}80{\times}40cm$) filled with 130L peat moss and 40L pearlite (v/v) were selected for the experiment. The growth containers were mulched with sawdust. Two different volumes (4L and 8L) of nutrient solution was tested at three different supplying frequencies (one time, two times, and three times) per week and the drainage quality of nutrient solution and fruit quality of 'Duke' blueberry was evaluated. The optimal drainage rate for the vegetable cultivation is known to be 20-30%. The results revealed that the average drainage rates of 27% and 29% for the nutrient solution supplied in 'Duke' blueberry growth medium at 4L, 2 times/7 days and 4L, 3 times/7days, respectively. The highest shoot diameter (4.2mm) and shoot length (31cm) of 'Duke' blueberry was recorded with the 8L of nutrient solution supplied at 3 times per 7 days. According to the analysis of inorganic components in the drainage of nutrient solution, there was a tendency of absorbing nitrogen at the early stage of growth. The supplying volume and frequency of nutrient solution was not significantly affected on 'Duke' blueberry fruit weight, soluble solids content, and titratable acidity. The highest yield per bush (2.7kg) was recorded for the nutrient solution supplied with 4L at three times per 7 days, while the 4L nutrient solution supplied at one time per 7 days resulted the lowest yield of 1.4kg per bush. Consequently, the tested nutrient solution can be applied for the 'Duke' blueberry bushes with the volume of 4L at three times per week for the better crop growth.

Multiplication of Infectious Flacherie and Densonucleosis Viruses in the Silkworm, Bombyx mori (가잠의 전염성 연화병 및 농핵병 바이러스 증식에 관한 연구)

  • 김근영;강석권
    • Journal of Sericultural and Entomological Science
    • /
    • v.25 no.2
    • /
    • pp.1-31
    • /
    • 1984
  • Flacherie, as one of the most prevalent silkworm diseases, causes severe economic damage to sericultural industry and its pathogens have been proved to be flacherie virus (FV) and densonucleosis virus (DNV). Multiplications of the viruses in the larvae of the silkworm, Bombyx mori, were studied by the sucrose density gradient centrifugation and electron microscopy. The quantitative and qualitative changes of nucleic acids and proteins were investigated from the midgut and hemolymph in the silkworm larvae infected separately with FV and DNV. The histopathological changes of epithelial cells of infected midgut also were examined by an electron microscope. 1. Purified fractions of FV or DNV in a sucrose density gradient centrifugation yielded one homogenous and sharp peak without a shoulder, suggesting no heterogenous materials in the preparation. Electron microscopy also revealed that FV and DNV were spherical particles, 27nm and 21nm in diameter, respectively. 2. Silkworm larvae showed a decrease in body weight on the 6th day and in midgut weight on the 3rd day after inoculation with FV or DNV. 3. DNA content was higher in the midgut when infected with FV or DNV, but the hemolymph of the infected larvae showed no difference during first 6 days after inoculation, after which DNA concentration declined rapidly. 4. RNA synthesis of silkworm larvae infected separately with FV and DNV was stimulated in the midgut, but RNA content was reduced in the hemolymph at the early stage of virus multiplication. At the late stage of virus multiplication, however, it was extremely reduced in both midgut and hemolymph. 5. The concentration of protein in the midgut and hemolymph of silkworm larvae infected separately with FV and DNV showed no difference from that of the healthy larvae at the early stage of virus multiplication, but it was significantly reduced at the late stage of virus multiplication. 6. There was no difference in the electrophoretic patterns of RNAs extracted from the midgut of healthy or virus-infected larvae. 7. The electrophoresis of proteins extracted from the midgut infected with FV or DNV, when carried out on the 1st and 5th day after virus inoculation, showed no difference from that of the healthy larvae. But, there was an additional band with medium motility in the proteins on the 8th day after virus inoculation, while a band with low mobility shown in the proteins of healthy larvae disappeared in the infected larvae. However, a band with high mobility in the healthy larvae was separated into two fractions in the infected larvae. 8. The electrophoretic pattern of hemolymph proteins of the silkworm larvae infected separately with FV and DNV was similar to that of the healthy larvae, but the concentration of hemolymph proteins in the infected larvae was lower than that of the healthy larvae at the late stage. 9. Two types of inclusion bodies were shown by the double staining of pyronin-methyl green in the columnar cell of the midgut on the 8th day after FV inoculation. 10. Electron microscopy of the infected midgut revealed that the 'cytoplasmic wall' of the goblet cell thickened on the 5th day after FV inoculation and several types of the cytopathogenic structures, such as virus$.$specific vesicles, virus particles, linear structures, tubular structures, and high electron-dense matrices were observed in the cytoplasm of the goblet cell. The virus particles were also observed in the microvilli and the structures similar to spherical virus particles were observed around the virus-specific vesicles, suggesting the virus assembly in the cytoplasm. 11. Fluorescence micrograph of the infected midgut stained with acridine orange showed that the nucleus, the site of DNV multiplication in the columnar cell, enlarged on the 5th day after virus inoculation. 12. Electron microscopic examination of DNV infected midgut revealed that the nucleolus of the columnar cell was broken into granules and those granules dispersed into apical region of the nucleus on the 5th day after virus inoculation. On the 8th day after inoculation, it was also observed that the nucleus of the columnar cell was full with the high electron-dense virogenic stroma which were similar to virus particles. These facts suggest that the virogenic stroma were the sites of virus assembly in the process of DNV multiplication.

  • PDF