• 제목/요약/키워드: 과도 분류

검색결과 8,511건 처리시간 0.034초

부추속(부추과) 미기록 식물 1종: 강부추 (An unrecorded species of Allium (Alliaceae) in Korea: A. longistylum Baker)

  • 최혁재;오병운;장창기
    • 식물분류학회지
    • /
    • 제33권3호
    • /
    • pp.295-301
    • /
    • 2003
  • 한반도 중부지방의 강변을 따라 생육하는 부추속(부추과) 1분류군을 국내 미기록종으로 보고한다. 이 분류군은 지금까지 중국에만 분포하는 것으로 알려졌던 Allium longistylum Baker로서, 국내 생육지의 특성을 고려하여 국명을 '강부추로' 신청하였다. 이 분류군에 대한 형태적 특징을 기재하였고, 도해 및 생태 사진을 제시하였다.

베이지안 부스팅학습에 의한 문서 분류 (Text Classification By Boosting Nave Bayes)

  • 김유환;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.256-258
    • /
    • 2000
  • 최근 들어, 여러 기계학습 알고리즘이 문서 분류와 여과에 사용되고 있다. 특히 AdaBoost와 같은 부스팅 알고리즘은 실세계의 문서 데이터에 사용되었을 때 비교적 좋은 성능을 보이는 것으로 알려져 있다. 그러나 지금까지의 부스팅 알고리즘은 모두 단어의 존재 여부만을 가지고 판단하는 분류자를 기반으로 하고 있기 때문에 가중치 정보를 충분히 사용할 수 없다는 단점이 있다. 이 논문에서는 나이브 베이스를 사용한 부스팅 알고리즘은 단어의 가중치 정보를 효율적으로 사용할 수 있을 뿐 아니라. 확률적으로도 의미있는 신뢰도(confidence ratio)를 생성 할 수 있기 때문이다. TREC-7과 TREC-8의 정보 여과 트랙(filtering track)에 대해서 실험한 결과 좋은 성능을 보여주었다.

  • PDF

금강 수계의 식물상 비교 연구 (The Comparative Study of Flora around the Geumgang Area)

  • 김영현;박정미;장창기
    • 환경생물
    • /
    • 제27권2호
    • /
    • pp.216-229
    • /
    • 2009
  • 금강 수계에 위치한 구룡산, 전월산, 사마산, 용머리산, 함라산의 관속식물상을 파악하고 보존대책을 제시하기 위하여 자생식물에 대한 방문조사를 실시하였다. 조사는 2007년 5월부터 2008년 4월까지 17회 수행하였으며, 조사지역 내에 자생하는 식물을 채집 동정하고 목록을 작성하였다. 목록을 바탕으로 한국특산종 및 법적보호종(멸종위기종, 보호종, 천연기념물)의 분포 현황 및 생태계 위협종 등의 분포 상황을 파악하였다. 조사지역 중 구룡산의 관속식물은 70과 151속 158종 22변종 3품종의 총 181분류군, 전월산에서는 45과 78속 72종 10변종의 총 92분류군, 사마산에서는 35과 69속 67종 10변종의 총 77분류군, 용머리산에서는 57과 109속 123종 13변종 1품종의 총 137분류군, 함라산에서는 64과 155속 178종 19변종 1품종의 총 197분류군으로 조사되었다. 이를 합친 5개 조사구역의 관속식물은 86과 246속 297종 34변종 3품종의 총 334분류군으로 판명되었다. 한국 특산종은 8분류군이 조사되었으나 희귀 및 멸종위기식물은 발견되지 않았다. 환경부 지정 식물구계학적 특정식물종은 4등급종 2분류군, 3등급종 8분류군이 확인되었다. 1, 2등급종을 포함하여 특정식물종은 모두 24분류군으로 확인되었다. 등산로 주변에 귀화식물 분포가 높았고 총 25분류군이 확인되었다. 금강 중류는 행정복합도시 건설로 인해 식생 파괴가 많이 우려되는 상황이었으며, 경작지 등의 개간에 의해 식물다양성이 많이 감소되어 있어 보존대책을 수립할 필요가 있는 것으로 사료된다.

스마트폰 과의존 분류 분석을 위한 딥러닝 학습률 모델 (A Learning Rate Model of Deep Learning for Classification Analysis of Problematic Smartphone Use)

  • 김유정;이동수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.401-403
    • /
    • 2021
  • 본 연구는 한국지능정보사회진흥원에서 제공한 2018년 스마트폰 과의존 실태조사에서 사용된 11개 변수와 스마트폰 과의존과의 관계를 탐색하고, 이를 통해 딥러닝 기반 스마트폰 과의존 분류 분석 모델을 개발하고자 시행되었다. 학습데이터셋은 전국 10,000개 가구내 만 3-69세 스마트폰 이용자 25,465명의 스마트폰 이용 형태 및 개인적 특성에 관한 데이터이다. 딥러닝은 심층신경망(DNN)을 설계하였으며, 은닉층(hidden layer)은 4개층으로 구성하였다. 입력한 데이터는 각각 200개, 150개, 100개, 50개, 2개 노드를 거치면서 최종 출력 정보인 스마트폰 과의존 분류율로 나타나는 모델이다. 이때 스마트폰 과의존 분류률을 높이기 위해 학습률(learning rate)과 같은 하이퍼 파라미터를 활용하여 세부조정하면서 가장 잘 학습하는 값을 찾아내었다. 연구결과, 학습횟수가 300번으로 학습율(learning.rate)이 0.01일때 훈련데이터에서 97.43%, 검증데이터에서 98.06%로 가장 높게 나타났다.

  • PDF

전파특성에 따른 인터넷 웜의 분류 기법 연구 (Internet worm classification depend on spreading specificity)

  • 이승규;조규형;이민수;문종섭;김동수;서정택;박응기
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (1)
    • /
    • pp.10-12
    • /
    • 2005
  • 인터넷 및 네트워크가 급격하게 발전함에 따라 많은 피해가 발생하고 있으며, 이러한 피해중 웜은 많은 장비 및 네트워크 상의 위협을 준다 이러한 위협이 되는 웜을 잘 대처하기 위해서는 웜의 행동자체에 대한 파악을 반드시 해야 하고 이에 선행 연구작업으로써 웜 분류는 반드시 실시되어야 한다. 외국의 웜 분류 연구중 UC Berkeley와 시만텍사의 분류방안을 살펴보고 그러한 분류 방안에 기반한 트래픽 및 웜 행동 패턴을 기준으로 전파특성과 웜의 행동 단계별 기준하에 재정립 및 분류 기법을 제안하겠다. 이러한 웜의 분류는 차후 시뮬레이터 모듈의 구현과 칵 모듈의 조합을 통한 구체적인 웜 모델링에 대한 연구의 기초가 된다.

  • PDF

한국어 대화문 화행 자동분류를 위한 언어학적 기반연구 (A Linguistic Study of Automatic Speech Act Classification for Korean Dialog)

  • 구영은;김지연;홍문표;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.17-22
    • /
    • 2017
  • 화행이란 의사소통 과정에서 발화자가 가지는 발화 의도를 말한다. 성공적인 의사소통을 위해서는 발화자의 화행을 정확하게 파악하는 것이 매우 중요하다. 본 논문에서는 한국어 대화체 문장의 화행 자동분류를 위해, 화행을 결정짓는 요인이 무엇인지 언어학적으로 분석하고자 하였다. 한국어 수업 대화를 분석하여 화행 분류 체계를 새롭게 자체 정립하였고, 언어학적 근거를 바탕으로 10개의 화행 분류 자질을 제안하였다. 또한 제안하는 화행 분류 자질을 검증하고자 웨카(Weka)를 이용하여 정확률 실험을 진행하였다.

  • PDF

개념분류기법을 적용한 한국에 명사분류 (Korean Noun Clustering Via Incremental Conceptual Clustering)

  • 정연수;조정미;김길창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1995년도 제7회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.50-55
    • /
    • 1995
  • 많은 언어관계들이 의미적으로 유사한 단어들의 집합에 적응된다. 그러므로 단어들을 의미가 비슷한 것들의 집합으로 분류하는 것은 아주 유용한 일이다. 본 논문에서는 말뭉치로부터의 동사와 명사의 분포정보를 이용하여 명사들을 분류하고자 한다. 한국어에서는 명사마다 문장에서 그 명사를 특정한 격으로 사용할 수 있는 동사들이 제한되어 있다. 그러므로 본 논문에서는 말뭉치에서 나타나는 명사와 그 명사를 특정한 격으로 사용하는 동사들의 분포정보로부터 명사들을 분류하는 방법을 제시한다. 형태소 해석된 50만 단어 말뭉치에서 가장 빈도수가 높은 명사 85단어를 대상으로 실험하였다. 명사와 동사의 구문정보를 사용하므로 의미적으로는 다르지만 쓰임이 비슷한 단어들도 같은 부류로 분류되었다. 의미적으로 애매성을 가지는 명사들의 경우도 실험결과를 나쁘게하는 요인이 되었다. 그리고, 좀더 좋은 결과를 얻기 위해서는 동사들도 의미가 유사한 것들로 분류한 후, 명사와 동사의 분포정보가 아닌 명사와 동사들의 집합의 분포정보를 이용하는 것도 종은 방법이 될 것이다.

  • PDF

유전자 알고리즘을 이용한 림프종 암의 최적 분류기 앙상블 (Optimal Classifier Ensemble for Lymphoma Cancer Using Genetic Algorithm)

  • 박찬호;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.356-358
    • /
    • 2003
  • DNA microarray기술의 발달로 한꺼번에 수천 개 유전자의 발현 정보를 얻는 것이 가능해졌는데, 이렇게 얻어진 데이터를 효과적으로 분류하는 시스템을 만들어놓으면 새로운 샘플이 정상상태인지, 질병을 가진 상태인지 예측할 수 있다. 분류 시스템을 위하여 여러 가지 특징선택방법들과 분류기법들을 사용할 수 있는데, 모든 상황에서 항상 뛰어난 성능을 보이는 특징선택법이나 분류기를 찾기는 힘들다. 안정되고 개선된 성능을 내기 위해서 특징-분류기의 앙상블을 이용할 수 있는데, 앙상블에 이용될 수 있는 특징선택 방법이나 분류기의 수가 많다면, 앙상블을 만들 수 있는 조합이 많아지기 때문에, 모든 조합에 대하여 앙상블 결과를 구하기는 거의 불가능하다. 이를 해결하기 위하여 본 논문에서는 유전자알고리즘을 이용하여 모든 앙상블 결과를 계산하지 않으면서 최적의 앙상블을 찾아내는 방법을 제안하였으며, 실제로 림프종 암 데이터에 적용한 결과 100%의 결합결과를 보이는 최적의 앙상블을 효과적으로 찾아내었다.

  • PDF

나이브 베이지안 분류자와 메세지 규칙을 이용한 스팸메일 필터링 시스템 (Spam-mail Filtering System Using Naive Bayesian Classifier and Message Rule)

  • 조한철;조근식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.223-225
    • /
    • 2002
  • 인터넷의 급속한 성장과 함께 E-Mail은 대표적인 통신수단의 하나가 되어버렸다. 편리하다는 점을 이용해서 엄청난 양의 스팸메일이 매일같이 쏟아져 오고 , 그 문제점의 심각성에 정보통신부에서 정보통신망 이용촉진 및 정보보호 등에 관한 법률이라는 새로운 법률까지 생겨났다. 본 논문에서는 이 법률에서 요구하는 '광고'라는 문구를 걸러내는 등의 메시지 규칙을 갖는 시스템과 기존의 문서 분류에 널리 쓰이던 나이브 베이지안 분류자(Naive Baesian Classifier)를 결합한 스팸 메일 필터링 시스템(Spam-mail Fitering System)을 제안한다. 제안된 시스템에서는 사용자가 직접 규칙을 작성할 필요없이 학습한 데이터를 갖고 자동으로 스팸메일을 분류할 수가 있다. 들어온 메일은 메시지 규칙 기반 필터가 먼저 적용되고, 메세지 규칙 기반 필터에서 분류되지 않으면 나이브 베이지안 필터에서 분류된다. 실험에서는 제안된 시스템의 성능을 평가하기 위해서 메시지 규칙을 사용한 시스템 및 나이브 베이지만 분류자 시스템과 비교 평가하였다. 또한 임계치를 변경함으로써 제안된 시스템의 성능을 높일 수있도록 하였다.

  • PDF

상호 재학습 방법을 이용한 화자 의도 분류 (Speakers' Intention Classification using a Mutual Retraining Method)

  • 이현정;선충녕;김학수;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.157-159
    • /
    • 2012
  • 화자의 의도를 결정하는 문제는 대화 시스템에서 핵심적인 부분이다. 기존의 연구에서는 모델의 간소화를 위해 화자의 의도를 화행과 개념이라는 두 요소로 분리하여 분석하였다. 하지만 두 요소는 서로 밀접하게 관련되어 있기 때문에 모델의 간소화는 의도 분석 성능 저하의 원인이 되었다. 이런 문제점을 해결하기 위해 본 논문에서는 화자 의도 분류를 위한 재학습 방법을 제안한다. 제안된 방법은 화자의 의도를 분석하기 위해 화행 분류 모델과 개념열 분석 모델로 분리하여 분석한다. 학습 단계에서 화행 분류 모델은 개념열 분류 결과를 입력으로 사용하고 개념열 역시 마찬가지로 적용하였다. 목적 지항 대화를 대상으로 한 실험에서 제안된 시스템은 화자 의도 분류에서 최대엔트로피 모델과 지지 벡터 기계의 성능을 효과적으로 향상시켰다.

  • PDF