A Learning Rate Model of Deep Learning for Classification Analysis of Problematic Smartphone Use

스마트폰 과의존 분류 분석을 위한 딥러닝 학습률 모델

  • Kim, Yu Jeong (Dept. of Nursing Science, Chosun Nursing College) ;
  • Lee, Dong Su (Dept. of Artificial Intelligence & Software, Sehan University)
  • 김유정 (조선간호대학교 간호학과) ;
  • 이동수 (세한대학교 인공지능소프트웨어학과)
  • Published : 2021.07.14

Abstract

본 연구는 한국지능정보사회진흥원에서 제공한 2018년 스마트폰 과의존 실태조사에서 사용된 11개 변수와 스마트폰 과의존과의 관계를 탐색하고, 이를 통해 딥러닝 기반 스마트폰 과의존 분류 분석 모델을 개발하고자 시행되었다. 학습데이터셋은 전국 10,000개 가구내 만 3-69세 스마트폰 이용자 25,465명의 스마트폰 이용 형태 및 개인적 특성에 관한 데이터이다. 딥러닝은 심층신경망(DNN)을 설계하였으며, 은닉층(hidden layer)은 4개층으로 구성하였다. 입력한 데이터는 각각 200개, 150개, 100개, 50개, 2개 노드를 거치면서 최종 출력 정보인 스마트폰 과의존 분류율로 나타나는 모델이다. 이때 스마트폰 과의존 분류률을 높이기 위해 학습률(learning rate)과 같은 하이퍼 파라미터를 활용하여 세부조정하면서 가장 잘 학습하는 값을 찾아내었다. 연구결과, 학습횟수가 300번으로 학습율(learning.rate)이 0.01일때 훈련데이터에서 97.43%, 검증데이터에서 98.06%로 가장 높게 나타났다.

Keywords