• Title/Summary/Keyword: 과대구멍

Search Result 10, Processing Time 0.024 seconds

Experimental Study on Behavior of High Strength Bolted Friction Joint with Oversized and Slotted Holes (과대구멍과 슬롯구멍을 갖는 고력볼트 마찰이음부의 거동에 관한 실험적 연구)

  • Kim, Yong Hwan;Roh, Won Kyoung;Lee, Seong Hui;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.683-690
    • /
    • 2008
  • When steel fabricators erect structural members in field, temporary tightening of fastener should be useful. However, if bolt holes are not aligned by production error or natural condition, additional effort andpain should be provided to align bolt holes. It lead to longer period than times of construction (a primarily day of construction) and more cost than originally cost. This problem will be overcomed by oversize or slotted holes. Early, AISC and Eurocode have included provision for design process such oversize or slotted holes. But, domestic design method is not refered about oversize and slotted holes. Meanwhile, domestic design method and construction environment are variance with Europe and the United States of America. Therefore, a suitable design method for oversize and slotted holes in domestic real condition is needed. In this study, we evaluated behavior of the joints and decided the friction coefficient on oversize and slotted holes of friction joints with high strength bolts.

Evaluation on the Behavior of Slip Critical Joints with TS High Strength Bolts Subjected to a Size of Bolt Holes (볼트 구멍 크기에 따른 TS 고력볼트 접합부 거동 평가)

  • Lee, Hyeon Ju;Kim, Kang Seok;Nah, Hwan Seon;Lee, Kang Min;Kim, Hyun Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.136-143
    • /
    • 2011
  • The oversized and slotted holes are frequently required for the built-up in construction sites. The foreign provisions specify the reduction of the slip load subjected to the size of bolt holes and the direction of load. There are no domestic building codes and researches on the bolt holes. Therefore, it is necessary to evaluate a change of joint strength quantitatively according to the bolt-hole size and surface condition by means of experiment. This study was conducted to evaluate the slip load subjected to the size of bolt holes, and measured on a change of clamping force of high strength bolts during 168 and 800 hours to analyze the trend of relaxation after fastening bolts. Torque shear bolts defined on KS B 2819 was used for the specimen. Test results exhibit that the variation on the slip load of the others was below 10% by contrast with the standard hole and the highest rate of relaxation was 2.66% of the initial clamping force at the case of the long-slotted hole of 2.5D.

Experimental Study on the Slip Coefficient with Member Type and Dimensions of High Tension Bolt Hole (부재 및 고장력볼트 구멍치수에 따른 미끄러짐계수의 실험적 연구)

  • Yang, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4277-4283
    • /
    • 2012
  • Slip coefficient, whose value is dependent on the condition of contact surface at the friction joint of high tension bolt, is determined by slip load. Because contact area affects slip load, contact area that varies with bolt hole size is also related to the slip coefficient. In this study, we manufactured 32 specimens and performed bending and tension tests in order to examine changes in slip coefficient and load with material type, bolt diameter, and size of bolt hole. Slip load of specimens with oversize bolt hole had strength that was more than 80% higher than the slip load of specimens with standard bolt hole, and it also exceeded the design slip strength. In addition, we observed significant correlation between net-section ratio and slip ratio of specimens with oversize and standard bolt hole. However, some differences between the specimens are thought to have been caused by reduction in initial axial force of high tension bolt, which is an important parameter of slip coefficient. It is self-evident that increased bolt hole size would lead to decrease in design strength as it reduces both slip coefficient and bolt axial force. Nevertheless, we suggest that some flexibility in regulation of bolt hole, as long as it does not threaten the structural stability, may be a positive factor in terms of workability and efficiency.

An Experimental and Analytical Studies on the Mechanical Behavior of High Tension Bolted Joints with Oversize Hole (과대공을 갖는 고장력 볼트 이음부의 역학적 거동에 관한 실험 및 해석적 연구)

  • Lee, Seung Yong;Park, Young Hoon;Cho, Sun Kyu;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.355-367
    • /
    • 1998
  • To evaluate the mechanical behavior and the compressive stress distribution in high tension bolted joints according to the size of bolt hole, the experimental and analytical studies are performed with enlarging bolt hole size. In experimental study, the static test is performed to measure the slip coefficient, and the fatigue test is also performed to evaluate the fatigue strength and failure pattern of fatigue crack. In analytical study, the compressive stress distribution is investigated by using the finite element analysis. From the result of experimental study, the slip coefficient and fatigue strength of the high tension bolted joints with oversize hole are not much different but somewhat it has decreased. These are because the size of bolt hole is larger than the holes of nominal size, therefore the width of clamping force is decreased and the compressive stress distribution area is smaller, this is certificated in the finite element analysis. In addition, the origin of fatigue crack in the oversize holes is closer to the hole than in the holes of nominal size, consequently it is investigated that the origin of fatigue crack is intimately associated with the compressive stress distribution which is formulated by the clamping force in both base metal and splice plate.

  • PDF

Slip Behavior of Friction Type High-Tension Bolted Joints with Oversize Hole (과대공을 갖는 고장력 볼트 마찰이음부의 미끄러짐 거동)

  • Cho, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.301-307
    • /
    • 1997
  • In field fabrication of steel members, the oversize hole is frequently required due to reaming and mismatching. But, there are no provisions and investigations about oversize hole in the Korean specifications. So, in this study, the tension test of friction type high-tention bolted joints is performed with parameters of bolt hole size, surface treatment and tightening force, and investigate the effect of slip behavior with those parameters. From the results, the enough tightening force is needed to obtain some degree slip load in shot blast treatment case, although tightening force is reduced somewhat, it is no problem to guarantee slip load in zincrich primer case. The slip behavior of joints with oversize hole(26mm) is similar to the slip behavior of joints with hole of nominal size.

  • PDF

A Study on Serviceability of Oversized Bolt Hole in High-Tension Bolt Joint Subjected to Bending (휨을 받는 고장력볼트 체결부에서 과대공에 따른 사용성에 관한 연구)

  • Park, Jeong-Ung;Yang, Seung-Hyun;Jang, Suk-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2831-2836
    • /
    • 2009
  • If a design load exceeding the frictional force of the contact surface is applied to the connection of steel members using a high-tension bolt friction joint, sliding occurs and the connection of the steel members bears the design load through the shear strength and bearing strength of the bolt and the base plate. The sliding distance can be determined by the tensile force of the bolt, the friction coefficient of the contact surface, and the position of the bolt in the base plate hole. This study measured and analyzed sliding according to standard bolt hole and oversize bolt hole when pure bending moment and tensile force were applied to high-tension bolt joints with different sizes of bolt holes made in the base plate and the cover plate. In a high-tension bolt joint receiving pure bending moment and tensile force, the load causing sliding in an oversize bolt hole was $74\sim94%$ of that in a standard bolt hole. In a member receiving tensile force, the sliding load ratio was lower when the size of oversize bolt holes in the base plate and the cover plate was large. In addition, the size of the oversize bolt hole in the base plate was more closely correlated with the change of sliding loadthan the size of the oversize bolt hole in the base plate.

A Study on the Serviceability of High-Tension Bolt Friction Joints according to Oversize Bolt Holes (과대 볼트구멍에 따른 고장력볼트 마찰이음의 사용성에 관한 연구)

  • Park, Jeong-Ung;Yang, Seung-Hyun;Cho, Kang-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.2055-2061
    • /
    • 2009
  • There can be some variation in the load carrying capacity of high-tension bolt friction joints when oversize bolt holes are made on the base plate and the cover plate. This study performed a static tensile test in order to examine the variation of slip load and slip coefficient according to standard bolt hole and oversize bolt hole in high-tension bolt friction joints. According to the results of the static tensile test, the slip coefficient changed to some degree according to oversize bolt holes on the base plate and the cover plate, but it was somewhat unreasonable to find a pattern in the change. Sliding strength showed a difference of up to 26% between the use of standard bolt holes and the use of oversize bolt holes. Because this exceeds the design sliding strength, however, its effect on the serviceability of joints under service load is insignificant. Thus, if the regulation on oversize bolt holes, which may be inevitable in making steel members, is applied flexibly, we may improve efficiency and economy in the design and construction of structures.

A Study on the Explosion Hazardous Area in the Secondary Leakage of Vapor Phase Materials Based on the Test Results and the Leak Rate According to SEMI S6 in the Semiconductor Industry (반도체 산업의 SEMI S6에 따른 실험결과 및 누출률을 기준으로 한 증기 상 물질의 2차 누출 시 폭발위험장소에 관한 연구)

  • Kim, Sang Ryung;Lim, Keun Young;Yang, Won Baek;Rhim, Jong Guk
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.15-21
    • /
    • 2020
  • Currently, in KS C IEC 60079-10-1, the leakage hole radius of secondary leakage is expressed as a recommendation. Underestimation of leak hole size can lead to underestimation of the calculated values for leak rates, and conservative calculations of leak hole sizes, which are considered for safety reasons, can be overestimated, resulting in an overestimated risk range. This too should be avoided. Therefore, a careful and balanced approach is necessary when estimating the size of leaking holes.Based on this logic, this study examines the stability by grasping the concentration inside the gas box when leaking dangerous substances as a result of experiments based on SEMI S6, an international safety standard applied in the semiconductor industry and The scope of explosion hazardous area was determined by applying the formula of KS C IEC 60079-10-1 according to SEMI F15 leak rate criteria and SEMI S6 leak rate criteria. Based on this, we will examine whether the exhaust performance needs to be improved as an alternative to FAB facilities that are difficult to apply to explosion hazards such as semiconductor industry.

Biodegradation of 4-t-Octylphenol by Basidioradulum molare and Schizopora paradoxa and Estrogenecity Reduction of its Metabolites (옥틸페놀(4-t-Octylphenol)의 Basidioradulum molare와 Schizopora paradoxa에 의한 분해 및 에스트로겐성 저감효과)

  • Lee, Soo-Min;Ku, Bon-Wook;Lee, Jae-Won;Choi, Don-Ha;Jeung, Eui-Bae;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.27-35
    • /
    • 2004
  • Recalcitrant 4-t-Octylphenol used as a surfactant was subjected to the biodegradation with wood rot fungi, Basidioradulum molare and Schizopora paradoxa. Two fungi were grown in the culture medium containing various concentrations of 4-t-Octylphenol in order to investigate their resistance against 4-t-octylphenol Schizopora paradoxa was reached to the full growth within 14 incubation days in the concentration of more than 200 ppm of 4-t-Octylphenol, while Basidioradulum molare showed the inhibitory mycelium growth as the concentration was increased Schizopora paradoxa and Basidioradulum molare biodegraded 95% and 36% of initial concentration of 4-t-Octylphenol at first incubation day, respectively. However, the biodegradation capability reached to more than 95% after 3 incubation days. During the biodegradation of 4-t-Octylphenol, the activity of manganese dependent peroxidase was induced by the addition of 4-t-Octylphenol in the culture medium of Schizopora paradoxa, but that of laccase was maximal before the addition. The reduction of estrogenecity was assayed by MCF-7 cell proliferation test and measurement of pS2 mRNA expression. The level of pS2 mRNA was decreased down to the level of baseline at first incubation day. Also, estrogenecity of 4-t-Ocrylphenol completely disappeared after treatment with supernatant by Schizopora paradoxa and Basidioradulum molare from first incubation day of culture down to the levels of vehicle.

A Study on Rational Design and Construction of High-Tension-Bolt Friction Joints (고장력볼트 마찰이음의 합리적 설계 및 시공에 관한 연구)

  • Lee, Seung Yong;Kyung, Kab Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.513-521
    • /
    • 2006
  • Many studies have been conducted on the high tension bolt friction connection in the view of the field practice. Those effort, however, unfortunately have not been appropriately applied in the design specifications. Recently, particularly for steel bridges, rationalization of design takes greater attention from designers and hence, demand on rationalization of high tension connection becomes more significant. The purpose of this study is to suggest direction for the rationalization of high tension bolt connection and to also provide fundamental information for the improvement of the design specifications. In order to accomplish the purposes, the design specifications in Korea was analyzed and compared with other specification from abroad, and was studied one of the most important factors including slip coefficient, and the specifications on the size of bolt holes. The effect of over-sized bolt hole and the reduction of axial force on bolt was evaluated through the experimental studies on the slippage of the high tension bolt connections. Other research topics included herein includes the difference of slip coefficients, the effect of over-sized bolt holes and the gap distance of members, and the application of filler plate and corrosion protected bolts. From the research results, it is known that the specifications in Korea apply a constant slip coefficient with respect to the contacted surface conditions while various coefficients are available depending on the contacted surface conditions. Therefore, it is recommended that the specifications in Korea also develop and detail the slip coefficient which can appropriately take account of the variation of the contacted surface conditions. It is also suggested that the limitation abroad on the over-sized bolt hole may be applied for enhancing the effectiveness of construction.