• Title/Summary/Keyword: 공학분석

Search Result 25,982, Processing Time 0.055 seconds

Study on the Applicability of Muography Exploration Technology in Underground Space Development (지하공간개발에서 뮤오그래피 탐사기술의 적용성에 관한 연구)

  • Seo, Seunghwan;Lim, Hyunsung;Ko, Younghun;Kwak, Kiseok;Chung, Moonkyung
    • Explosives and Blasting
    • /
    • v.39 no.4
    • /
    • pp.22-33
    • /
    • 2021
  • Recently, the frequent occurrence of ground subsidence in urban areas has caused increasing anxiety in residents and incurred significant social costs. Among the causes of ground subsidence, the rupture of old water and sewer pipes not only halts the operation of the buried pipes, but also leads to ground and water pollution problems. However, because most pipes are buried after construction and cannot be seen with the naked eye, the importance of maintenance has underestimated compared to other structures. In recent years, integrated physical exploration has been applied to the maintenance of underground pipes and structures. Currently, to investigate the internal conditions and vulnerable portions of the ground, consolidated physical surveys are executed. Consolidated physical surveys are analysis techniques that obtain various material data and add existing data using multiple physical surveys. Generally, in geotechnical engineering, consolidated physical surveys including electrical and surface wave surveys are adopted. However, it is difficult to investigate time-based changes in under ground using these surveys. In contrast, surveys using cosmic-ray muons have been used to scan the inner parts of nuclear reactors with penetration technology. Surveys using muons enable real-time observation without the influence of vibration or electricity. Such surveys have great potential for available technology because of their ability to investigate density distributions without requiring as much labor. In this paper, survey technologies using cosmic ray muons are introduced, and the possibilities of applying such technologies as new physical survey technologies for underground structures are suggested.

A Study on the Expansion of Workflow for the Collection of Surface Web-based OSINT(Open Source Intelligence) (표면 웹기반 공개정보 수집을 위한 워크플로우 확장 연구)

  • Lee, SuGyeong;Choi, Eunjung;Kim, Jiyeon;Lee, Insoo;Lee, Seunghoon;Kim, Myuhngjoo
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.367-376
    • /
    • 2022
  • In traditional criminal cases, there is a limit to information collection because information on the subject of investigation is provided only with personal information held by the national organization of legal. Surface web-based OSINT(Open Source Intelligence), including SNS and portal sites that can be searched by general search engines, can be used for meaningful profiling for criminal investigations. The Korean-style OSINT workflow can effectively profile based on OSINT, but in the case of individuals, OSINT that can be collected is limited because it begins with "name", and the reliability is limited, such as collecting information of the persons with the same name. In order to overcome these limitations, this paper defines information related to individuals, i.e., equivalent information, and enables efficient and accurate information collection based on this. Therefore, we present an improved workflow that can extract information related to a specific person, ie., equivalent information, from OSINT. For this purpose, different workflows are presented according to the person's profile. Through this, effective profiling of a person (individuals) is possible, thereby increasing reliability in collecting investigation information. According to this study, in the future, by developing a system that can automate the analysis process of information collected using artificial intelligence technology, it can lay the foundation for the use of OSINT in criminal investigations and contribute to diversification of investigation methods.

Comparative analysis of fusion factors affecting the accuracy of injection amount of remote fluid monitoring system (원격 수액모니터링 시스템의 주입량의 정확도에 영향을 주는 융합인자의 비교 분석)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.125-131
    • /
    • 2022
  • Recently, the prevalence of remotely managed patient care systems in medical institutions is increasing due to COVID-19. In particular, in the case of fluid monitoring, hospitals are considering introducing it as a system that can reduce patient safety and nurses' work. There are two products under development: a load cell method that measures weight and a method that detects drops of sap by infrared sensing. Although each product has differences in operation principle, sensor type, size, usage, and price, medical institutions are highly interested in the accuracy of the data obtained.In this study, two prototypes with different sensor methods were manufactured and the total amount of infusion per hour was measured to test the accuracy, which is the core of the infusion monitoring device. In addition, when there was an external movement, the change in the measured value of the sap was tested to evaluate the accuracy according to the measurement method. As a result of the experiment, there was a difference of less than 5% in the measurement value error of the two devices, and the load cell method showed a difference in the low-capacity measurement value and the infrared method in the high-capacity measurement value. As a result of this experiment, there was little difference in accuracy according to the sensor method of the infusion monitoring device, and it is considered that there is no problem in accuracy when used in a medical institution.

The Effect of Technology Difficulty and Safety Perception on Customer Value Perception and Intention to Use Self-Service Technologies (셀프서비스기술 환경에서 기술난이도와 안전성 지각이 고객가치인식과 지속사용의도에 미치는 영향)

  • Bu, Shaoyang;Liu, Tianyuan;Koh, Joon
    • Knowledge Management Research
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2022
  • Computer and Internet information technologies(ICTs) have changed the modern service industry and people's life style. In particular, the global spread of COVID-19 has attracted more attention to contact service types such as self-service technology. With the increase in labor costs and the enhancement of consumer self-awareness, more and more companies transfer part of their work to customers through their own service technology. This study seeks to answer the following questions. (1) Do technology difficulty and safety perception affect customer value recognition in the self-service technologies? (2) Does customer value recognition influence the intention to use such technologies continuously? This study conducted an empirical analysis with 327 samples to validate the influence of self-service characteristics(technology difficulty and safety perception) on customer value recognition and continuous utilization intentions. Also, it analyzes the moderating effects of age and frequency of use on the relationship between self-service characteristics and customer value recognition. The study results show that the technology difficulty does not affect the customer's perceived value recognition; and the higher the customer's value recognition, the higher the intention of continuous use.

Analysis of Volatile Organic Compounds in Sediments Using HS-GC/MS - Confirmation of Matrix Effects in External and Internal Standard Methods - (HS-GC/MS를 이용한 퇴적물 중 휘발성유기화합물 분석 - 외부 및 내부표준방법에서 매질영향 확인 -)

  • Shin, Myoung-Chul;Jung, Da-som;Noh, Hye-ran;Yu, Soon-ju;Seo, Yong-Chan;Lee, Bo-Mi
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.510-519
    • /
    • 2021
  • Volatile Organic Compounds (VOCs) in sediments, which can cause human health problems, have been monitored in Korea since 2014. Measured VOC concentrations can be affected by matrix type and the volatility of target substances. In this study, (1) VOCs volatility and the influence of matrix interference were confirmed, and (2) internal standards (IS) method was applied to improve analytical method. For these purposes, method detection limit (MDL), calibration linearity, precision and accuracy of VOCs were compared in various matrices using the IS. Some of VOCs in sediments showed different peak areas and reduced rates compared to water matrix. It was suggested that adsorption properties of sediments hindered the migration to vapor during heat pretreatment in headspace method. A calibration curve was created in clean sand. Recovery rates for the calibration curve method and IS applying method were 64.1~83.1% and 99.1~119.3%, respectively. Relative standard deviations ranged from 11.1% to 21.6% for the calibration curve method and those for IS ranged 4.7% to 13.7%. In case of real sediment, calibration curve and 1,2-Dichlorobenzene-d4 (ODCB) among IS were not suitable. The average recovery rate of Fluorobenzene (FBZ) increased by 56.4% and Relative Standard Deviation (RSD) by 4.7%. However, the recovery rate was increased in the samples with large values of igniting intensity. This study confirmed that influence of the matrix of VOCs in sediment, and addition of IS materials improved precision and accuracy. Although IS corrects volatilization and adsorption, it is recommended that more than two types of IS should be added rather than single.

Estimation of Structural Strength for Spudcan in the Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 스퍼드캔 구조강도 예측법)

  • Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.141-152
    • /
    • 2022
  • As interest increases related to the development of eco-friendly energy, the offshore wind turbine market is growing at an increasing rate every year. In line with this, the demand for an installation vessel with large scaled capacity is also increasing rapidly. The wind turbine installation vessel (WTIV) is a fixed penetration of the spudcan in the sea-bed to install the wind turbine. At this time, a review of the spudcan is an important issue regarding structural safety in the entire structure system. In the study, we analyzed the current procedure suggested by classification of societies and new procedures reflect the new loading scenarios based on reasonable operating conditions; which is also verified through FE-analysis. The current procedure shows that the maximum stress is less than the allowable criteria because it does not consider the effect of the sea-bed slope, the leg bending moment, and the spudcan shape. However, results of some load conditions as defined by the new procedure confirm that it is necessary to reinforce the structure to required levels under actual pre-load conditions. Therefore, the new procedure considers additional actual operating conditions and the possible problems were verified through detailed FE-analysis.

Natural Frequency Measurement for Scour Damage Assessment of Caisson Pier (교량 우물통 기초의 세굴피해 평가를 위한 고유진동수 측정)

  • Nguyen, Quang-Thien-Buu;Ko, Seok-Jun;Jung, Gyungja;Lee, Ju-Hyung;Yoo, Min-Taek;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.51-60
    • /
    • 2021
  • River scour erodes the soil around the pier, reducing the lateral bearing capacity of the pier and lowering the stability of the structure. In this study, in order to examine the effect of scouring on the stability of the structure, an experiment was performed to measure the natural frequency of the pier according to the excavation of the surrounding ground. Impact vibration test was conducted on the pier with the caisson foundation of the Mangyeonggang Bridge, which is scheduled to be demolished. Accelerometers were attached to the top, center, and bottom of the pier and the acceleration responses were measured by hitting those three points. The experimental results showed that the top hit showed consistent and reasonable results of the acceleration responses according to the hitting position. The measured accelerations were converted to the frequency domain through Fast Fourier Transform (FFT), and then the natural frequency was determined. In addition, to analyze the scour effect on the natural frequency of the pier, the ground around the pier was excavated and the natural frequency change was analyzed. As a result, the natural frequency showed the decreasing tendency according to the excavation depth, but the decrease was small due to the large stiffness of the caisson foundation.

Engineering Properties of CB Cut-off Walls Mixed with GGBS (고로슬래그 미분말을 혼합한 CB 차수벽의 공학적 특성)

  • Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.33-39
    • /
    • 2022
  • For a slag-cement-bentonite (slag-CB) cut-off wall, GGBS replaces a part of the cement mixed to build a CB cut-off wall, which is used to block the flow and leakage of pollutants or groundwater; prevent seawater infiltration; and repair or reinforcement an aged embankments. Slag-CB cut-off walls are used in various applications in different fields where groundwater control is required due to its excellent characteristics. Such properties include high strength, low permeability, high durability and chemical resistance. However, despite these advantages, slag-CB cut-off walls are not extensively studied in Korea and thus are not applied in many cases. Particularly, GGBS, which replaces cement in a mixture, has different properties depending on its country of production. Consequently, it is necessary to perform various studies on slag-CB cut-off walls that use GGBS produced in Korea in order to increase its usability. This study has evaluated the bleeding rate, setting time, strength, and permeability in relation to the cement replacement rate of GGBS produced in Korea for slag-CB cut-off walls, with the aim to increase its usability. The evaluation found that slag-CB cut-off walls, made of a mixture containing GGBS produced in Korea, have a lower bleeding rate and permeability, and higher strengththan CB cut-off walls. It was also analyzed that such improved performance is more effective with a higher cement replacement rate of GGBS.

CoAID+ : COVID-19 News Cascade Dataset for Social Context Based Fake News Detection (CoAID+ : 소셜 컨텍스트 기반 가짜뉴스 탐지를 위한 COVID-19 뉴스 파급 데이터)

  • Han, Soeun;Kang, Yoonsuk;Ko, Yunyong;Ahn, Jeewon;Kim, Yushim;Oh, Seongsoo;Park, Heejin;Kim, Sang-Wook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.4
    • /
    • pp.149-156
    • /
    • 2022
  • In the current COVID-19 pandemic, fake news and misinformation related to COVID-19 have been causing serious confusion in our society. To accurately detect such fake news, social context-based methods have been widely studied in the literature. They detect fake news based on the social context that indicates how a news article is propagated over social media (e.g., Twitter). Most existing COVID-19 related datasets gathered for fake news detection, however, contain only the news content information, but not its social context information. In this case, the social context-based detection methods cannot be applied, which could be a big obstacle in the fake news detection research. To address this issue, in this work, we collect from Twitter the social context information based on CoAID, which is a COVID-19 news content dataset built for fake news detection, thereby building CoAID+ that includes both the news content information and its social context information. The CoAID+ dataset can be utilized in a variety of methods for social context-based fake news detection, thus would help revitalize the fake news detection research area. Finally, through a comprehensive analysis of the CoAID+ dataset in various perspectives, we present some interesting features capable of differentiating real and fake news.

Analysis of the Failure Mode in a Homogeneous Sandy Slope Using Model Test (모형실험을 이용한 균질한 사질토 사면의 붕괴형상 분석)

  • Song, Young-Suk;Park, Joon-Young;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.209-219
    • /
    • 2022
  • To experimentally investigate the variation of soil characteristics in slope during rainfall and the shape of slope failure, the model test was performed using soil box and artificial rainfall simulator. The model test of slope formed by the homogenous sand was performed, and the saturation pattern in the model slope due to rainfall infiltration was observed. The slope model with the inclination of 35° was set up on the slope of 30°, and the rainfall intensity of 50 mm/hr was applied in the test. The soil depth of 35 cm was selected by considering the size of soil box, and the TDR (time domain reflectometry) sensors were installed at various depths to investigate the change of soil characteristics with time. As the result of model test, the slope model during rainfall was saturated from the soil surface to the subsurface, and from the toe part to the crest part due to rainfall infiltration. That is, the toe part of slope was firstly saturated by rainfall infiltration, and then due to continuous rainfall the saturation range was enlarged from the toe part to the crest part in the slope model. The failure of slope model was started at the toe part of slope and then enlarged to the crest part, which is called as the retrogressive failure. At the end of slope failure, the collapsed area increased rapidly. Also, the mode of slope failure was rotational. Meanwhile, the slope failure was occurred when the matric suction in the slope was reached to the air entry value (AEV) estimated in soil-water characteristic curve (SWCC).