• Title/Summary/Keyword: 공침법

Search Result 249, Processing Time 0.024 seconds

Morphology, Transparency, and Thermal Resistance of SAN Nanocomposites Containing Organically Modified Layered Double Hydroxides (유기변성 LDH를 사용한 SAN 나노컴포지트의 형태학, 투명성 및 내열성)

  • Kim, Seog-Jun
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.287-294
    • /
    • 2012
  • ZnAl-LDH(layered double hydroxide) (Zn:Al=2:1 mole ratio) modified with stearic acid (SA) or oleic acid (OA) was synthesized by a coprecipitation method and compounded to SAN polymer at various contents. All the SAN composites were manufactured by a co-rotating twin-screw extruder and subsequently injection molded into several specimen. Morphology, transparency, and thermal resistance of these composites were evaluated by TEM, XRD(X-ray diffractometry), UV-Vis spectrophotometry, and thermogravimetric analysis. SAN nanocomposites containing OA-$Zn_2Al$ LDH showed better optical transmittance than SAN nanocomposites containing SA-$Zn_2Al$ LDH. All the SAN nanocomposites containing OA-$Zn_2Al$ LDH or SA-$Zn_2Al$ LDH exhibited improvement of thermal resistance at second stage of thermal oxidation. These results were explained by the fact that the interaction between organic modifier and polymer performed an important role in the property improvement of polymer nanocomposites.

Sintering Behavior and Mechanical Strength of Hydroxyapatite/Polyacrylic Acid Homogeneous Composite (Hydroxyapatite/Polyacrylic Acid 균질복합체의 소결 특성 및 기계적 강도)

  • 이병교;이석기;구광모;이미혜;이형동
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.566-571
    • /
    • 2003
  • Hydroxyapatite (HAp)/Polyacrylic Acid(PAA) homogeneous composites of four different composition ratio were preparation by co-precipitation process with synthetic HAp and PAA as a binder. HAP/PAA composites were molding by cold isostatic pressing and were sintering by various condition in air. Crystallinity and structure of sintered HAp/PAA composites were investigated by XRD and FT-IR. Also, the compressive strength and the fracture surface of sintered specimens were measured by UTM and SEM. HAp/PAA composites were showed phase transformation of partially ${\alpha}$, ${\beta}$-tricalcium phosphate at sintering condition of 1200$^{\circ}C$ and 3 h. The pore size and porosity of sintered body were showed the range of 0.2∼3.0 $\mu\textrm{m}$ and 0.49∼13.43%, respectively. The compressive strength of sintered specimens were appeared the range of 36.6∼58.2 MPa. From these results, the sintered HAp/PAA comosites can be accounted for the microporous HAp having a good compressive strength due to homogeneous pore morphology.

Acidic Properties of Mg-Al Mixed Oxides in the Dehydration of iso-Propanol (이소프로판올의 탈수반응에 있어서 Mg-Al 혼합 산화물의 산점 특성)

  • Youn, Hyunki;Ahn, Ji-Hye;Park, Jung-Hyun;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.330-336
    • /
    • 2014
  • Mg-Al mixed oxides with molar ratio of Mg/Al = 1-3 were prepared by co-precipitation and characterized by using X-ray diffraction, scanning electron microscopy, BET surface area and pore volume measured by $N_2$ sorption analysis, and temperature programmed desorption of iso-propanol. As Al content in Mg-Al mixed oxide increased, the acidity and BET surface area proportionally increased. This increase of acidity directly influenced the catalytic activity of iso-propanol conversion and selectivity to propylene.

Properties of the System $ZrO_2$+3m/o $Y_2O_3$ Powder Prepared by Co-Precipitation Method(II) Effects of $Al_2O3$$Cr_2O_3$Addition on Mechanical Properties and Microstructures of Y-TZP (공침법으로 제조한 $ZrO_2$+3m/o $Y_2O_3$계 분체의 특성(II) : Y-TZP의 기계적 성질 및 미세구조에 미치는 $Al_2O3$$Cr_2O_3$의 첨가영향)

  • 이홍림;최동근;홍기곤;신현곤
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.465-472
    • /
    • 1990
  • The effects of Al2O3 and Cr2O3 addition on the mechanical properties and microstructures of Y-TZP ceramics obtained by co-precipitation method of ZrO2+3m/o Y2O3, following pressureless sintering at 150$0^{\circ}C$ for 2h were investigated. The addition of Al2O3 and Cr2O3 improved the Y-TZP sinterability and the Al2O3 addition showed the better effect on Y-TZP sintering than that of the Cr2O3 addition. The density and microstructure had the better effect on the bending strength of specimen more than stressinduced phase transformation (SIPT) of ZrO2 from tetragonal to monoclinic phase. The hardness of the specimens was found to be depend on the relative density and the fracture toughness of Y-TZP was found to rely on the amount of SIPT. The grian size of Cr2O3-doped Y-TZP was observed to be relatively smaller and had a narrower distribution than that of Al2O3-doped Y-TZP. If decomposition reaction of Cr2O3 can be controlled at high temperatures, it is anticipated that the mechanical properties of Y-TZP can be much improved by the Cr2O3 addition.

  • PDF

Effects of $\textrm{Al}_2\textrm{O}_3$ Addition on Mrcrostructure and Conductivity of CaO-stabilized $\textrm{ZrO}_{2}$ (CaO안정화 $\textrm{ZrO}_{2}$의 미세구조 및 전기전도도에 미치는 $\textrm{Al}_2\textrm{O}_3$의 첨가효과)

  • Choe, Yong-Gyu;Lee, Ju-Sin;Kim, Hae-Du
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.256-262
    • /
    • 1998
  • 산소이온전도체 13mol% CaO안정화 $ZrO_{2}$에 대한 $AI_{2}$$O_{3}$의 첨가효과를 살펴보기 위해 출발원료분말을 ($Zr_{0.87}$ $Ca_{0.13}$ O$1.87_{1-x}$ $AI_{2}$$O_{3}$)x,(x=0,0.01,0.02,0.03,0.05)와 같은 조성이 되도록 공침법으로 합성하고 $1400^{\circ}C$에서 소결시켜, $AI_{2}$$O_{3}$의 첨가에 따른 /grain size의 변화, $AI_{2}$$O_{3}$의 형태 및 존재위치, 소결밀도의 변화, 그리고 저항률의 변화를 살펴보았다. 그 결과, 결정립의 크기는 1mol% A $I_{2}$$O_{3}$첨가까지는 증가하였고, 2mol%첨가이상에서는 입계로 석출하기 시작한 $AI_{2}$$O_{3}$의 pinning효과에 기인되어 감소하였다. 또 1mol% $AI_{2}$$O_{3}$첨가시에 격자상수값의 급격한 감소가 보여지고, 그 이상에서는 변화가 별로 없어 13mol%CaO안정화 $ZnO_{2}$의 고용도한은 최대 1mol%임을 알 수 있었다. 전기전도도 또한 1mol% $AI_{2}$$O_{3}$첨가시에 증가됨을 나타냈다. $ZrO_{2}$에의 고용도한까지의 $AI_{2}$$O_{3}$첨가는 결정립성장을 촉진시키며 밀도값의 증대를 가져오고 전기전도도의 증가를 가져오는 긍정적인 효과를 나타냈다.

  • PDF

Characteristics of Ni1/3Co1/3Mn1/3(OH)2 Powders Prepared by Co-Precipitation in Air and Nitrogen Atmospheres (공기와 질소 분위기에서 공침법으로 합성된 Ni1/3Co1/3Mn1/3(OH)2 분말의 특성 비교)

  • Choi, Woonghee;Park, Se-Ryen;Kang, Chan Hyoung
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.136-142
    • /
    • 2016
  • As precursors of cathode materials for lithium ion batteries, $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders are prepared in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH in the presence of $NH_4OH$ in air or nitrogen ambient. Calcination of the precursors with $Li_2CO_3$ for 8 h at $1,000^{\circ}C$ in air produces dense spherical cathode materials. The precursors and final powders are characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analysis, tap density measurement, and thermal gravimetric analysis. The precursor powders obtained in air or nitrogen ambient show XRD patterns identified as $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$. Regardless of the atmosphere, the final powders exhibit the XRD patterns of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (NCM). The precursor powders obtained in air have larger particle size and lower tap density than those obtained in nitrogen ambient. NCM powders show similar tendencies in terms of particle size and tap density. Electrochemical characterization is performed after fabricating a coin cell using NCM as the cathode and Li metal as the anode. The NCM powders from the precursors obtained in air and those from the precursors obtained in nitrogen have similar initial charge/discharge capacities and cycle life. In conclusion, the powders co-precipitated in air can be utilized as precursor materials, replacing those synthesized in the presence of nitrogen injection, which is the usual industrial practice.

Characterization of Low Temperature Selective Catalytic Reduction over Ti Added Mn-Cu Metal Oxides (Ti가 첨가된 Mn-Cu 혼합산화물을 이용한 저온 SCR 반응 특성)

  • Lee, Hyun Hee;Park, Kwang Hee;Cha, Wang Seog
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.599-604
    • /
    • 2013
  • In this study, Ti added Mn-Cu mixed oxide catalysts were prepared by a co-precipitation method and used for the low temperature (< $200^{\circ}C$) selective catalytic reduction (SCR) of NOx with $NH_3$. Physicochemical properties of these catalysts were characterized by BET, XRD, XPS, and TPD. Mn-Cu mixed oxide catalysts were found to be amorphous with a large surface and they showed high SCR activity. Experimental results showed that the addition of $TiO_2$ to Mn-Cu oxide enhanced the SCR activity and $N_2$ selectivity. Ti addition led to the chemically adsorbed oxygen species that promoted the oxidation of NO to $NO_2$ and increased the number of $NH_3$ adsorbed-sites such as $Mn^{3+}$.

Development of Cu-CeO2 Catalysts for Selective Oxidation of CO (일산화탄소의 선택적 산화반응을 위한 Cu-CeO2 촉매의 개발)

  • Jung, C.-R.;Han, J.;Yoon, S.P.;Nam, S.-W.;Lim, T.-H.;Hong, S.-A.;Lee, H.-I.
    • Clean Technology
    • /
    • v.8 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • $Cu-CeO_2$ catalysts were prepared by co-precipitation and liquid phase oxidation (CP-LPO) and the prepared catalysts were examined as selective oxidation of carbon monoxide catalysts for the application of fuel cell vehicles. The prepared $Cu-CeO_2$ catalysts showed high reaction activity, but it was hard to find the correlation between the amount of Cu loaded and the reaction activities. As increase of the amount of Cu loaded, the micro pore structure of the catalyst was changed. It is due to the formation of solid solution between Cu and $CeO_2$. During pretreatment, the catalyst formed the solid-solution of Cu-Ce-O, resulting in the improvement of catalytic activity.

  • PDF

CO oxidation Reaction over copper metal oxide catalysts (구리복합산화물 촉매상에서 일산화탄소의 산화반응)

  • Lee, Hak Beum;Koh, Hyoung Lim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.129-135
    • /
    • 2016
  • CO oxidation was performed with Cu-Mn and Cu-Zn co-precipitated catalysts as differential precipitant, metal ratio and calcination temperature. The effects of differential metal mole ratio and calcination temperature in mixed metal oxide catalyst were investigated with CO oxidation reaction. Physiochemical properties were studied by XRD, $N_2$ sorption and SEM. 2Cu-1Mn with $Na_2CO_3$ catalyst calcined at $270^{\circ}C$ has a large surface area $43m^2/g$ and the best activity for CO oxidation. $Cu_{0.5}Mn_{2.5}O_4$ in XRD peak shows the lower activity than others. The catalytic activity over the catalyst calcined $270^{\circ}C$ displayed the highest conversion, and it was better activity comparing with Pt catalysts CO conversion.

Preparation and Sintering Characteristics of Gd-Doped CeO2 Powder by Oxalate Co-Precipitation (옥살산 공침법에 의한 Gd-Doped CeO2 분말의 합성 및 소결 특성)

  • Han, In-Dong;Lim, Kwang-Young;Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.666-672
    • /
    • 2006
  • GDC20($Ce_{0.8}Gd_{0.2}O_{1.9}$) powder was synthesized by oxalate co-precipitation and milling and its thermal decomposition, phase formation, and sinterability were investigated. As-prepared precipitates were non-crystalline due to the milling process and completely decomposed at 400$^{\circ}C$ The powder calcined at 800$^{\circ}C$ for 2 h contained fine p]sty particles with an average size of 0.69 $\mu$m. Attrition milling of the calcined powder for 2 h had a little milling effect, resulting in a slight decrease in the particle size to 0.45 $\mu$m. The milled powder consisted of small spherical primary particles and some large particles, which had been agglomerated during calcination. Due to the excellent sinterability of the powder, sintering of the powder compacts for 4 h showed relative densities of 78.7% at 1000$^{\circ}C$ and 97.8% at 1300$^{\circ}C$, respectively. Densification was found to almost complete at temperature above 1200$^{\circ}C$ and a dense and homogeneous microstructure was obtained. A rapid grain growth occurred between 1200$^{\circ}C$ and 1300$^{\circ}C$. Grains in 0.1$\sim$0.5 $\mu$m sizes at 1200$^{\circ}C$ grew to 0.2$\sim$2 $\mu$m and their size distribution became broader at 1300$^{\circ}C$.