DOI QR코드

DOI QR Code

Acidic Properties of Mg-Al Mixed Oxides in the Dehydration of iso-Propanol

이소프로판올의 탈수반응에 있어서 Mg-Al 혼합 산화물의 산점 특성

  • Youn, Hyunki (Industry-University Incorporation Foundation) ;
  • Ahn, Ji-Hye (Department of Chemical Engineering, Chungbuk National University) ;
  • Park, Jung-Hyun (Department of Chemical Engineering, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2014.08.08
  • Accepted : 2014.09.25
  • Published : 2014.09.30

Abstract

Mg-Al mixed oxides with molar ratio of Mg/Al = 1-3 were prepared by co-precipitation and characterized by using X-ray diffraction, scanning electron microscopy, BET surface area and pore volume measured by $N_2$ sorption analysis, and temperature programmed desorption of iso-propanol. As Al content in Mg-Al mixed oxide increased, the acidity and BET surface area proportionally increased. This increase of acidity directly influenced the catalytic activity of iso-propanol conversion and selectivity to propylene.

Mg/Al 몰비를 1에서 3 범위에서 변화시켜 Mg-Al 혼합산화물을 공침법으로 제조하였다. 제조된 Mg-Al 혼합산화물은 X-선회절분석, 주사전자현미경분석, 질소흡착에 의한 비표면적 및 기공부피 측정, 이소프로판올의 승온탈착모델 반응으로 제조된 산화물의 특성분석을 수행하였다. 소성된 Mg-Al 혼합산화물은 이소프로판올의 탈수소/탈수반응에 적용하여 산염기 특성을 비교하였다. Mg-Al 혼합산화물에서 Al 함량이 증가함에 따라 비표면적 및 산점세기가 비례적으로 증가하였다. 이러한 산점세기 변화는 이소프로판올의 전환율 및 프로필렌 선택도에 직접적인 영향을 미쳤다.

Keywords

References

  1. Lobera M. P., Tellez C., Herguido J., and Menendez M., "Pt-Sn/$MgAl_2O_4$ as n-Butane Dehydrogenation Catalyst in a Two-Zone Fluidized-Bed Reactor," Ind. Eng. Chem. Res., 48, 6573-3578 (2009). https://doi.org/10.1021/ie900381p
  2. Song H. S., Kwon S. J., Epling W. S., Croiset E., Nam S. C. and Yi K. B., "Synthesis Gas Production via Partial Oxidation, $CO_2$ Reforming, and Oxidative $CO_2$ reforming of $CH_4$ over a Ni/Mg-Al Hydrotalcite-type Catalyst," Clean Technol., 20, 189-201 (2014). https://doi.org/10.7464/ksct.2014.20.2.189
  3. Ohi T., Miyata T., Li D., Shishido T., Kawabata T., Sano T., and Takehira K., "Sustainability of Ni loaded Mg-Al Mixed Oxide Catalyst in Daily Startup and Shutdown Operations of $CH_4$ Steam Reforming," Appl. Catal. A: Gen., 308, 194-203 (2006). https://doi.org/10.1016/j.apcata.2006.04.025
  4. Roy S., van Vegten N., Maeda N., and Baiker A., "NOx Storage and Reduction over Flame-made M/$MgAl_2O_4$ (M = Pt, Pd, and Rh): A Comparative Study," Appl. Catal. B: Environ., 119, 279-286 (2012).
  5. Fornasari G., Glockler R., Livi M., and Vaccari A., "Role of the Mg/Al Atomic Ratio in Hydrotalcite-based Catalysts for NOx Storage/Reduction," Appl. Clay Sci., 29, 258-266 (2005). https://doi.org/10.1016/j.clay.2005.02.002
  6. Li W.-C, Comotti M., Lu A.-H., and Schuth F, "Nanocast Mesoporous $MgAl_2O_4$ Spinel Monoliths as Support for Highly Active Gold CO Oxidation Catalyst," Chem. Commun., 16, 1772-1774 (2006).
  7. Valant A. L., Garron A., Bion N., Epron F., and Du D., "Hydrogen Production from Raw Bioethanol over Rh/$MgAl_2O_4$ Catalyst: Impact of Impurities: Heavy Alcohol, Aldehyde, Ester, Acid and Amine," Catal. Today 138, 169-174 (2008). https://doi.org/10.1016/j.cattod.2008.06.013
  8. Iqbal M. J., Ismail B., Rentenberger C., and Ipser H, "Modification of the Physical Properties of Semiconducting $MgAl_2O_4$ by Doping with a Binary Mixture of Co and Zn ions," Mater. Res. Bull., 46, 2271-2277 (2011). https://doi.org/10.1016/j.materresbull.2011.08.061
  9. Shiono T., Shiono K., Miyamoto K., and Pezzotti G., "Synthesis and Characterization of $MgAl_2O_4$ Spinel Precursor from a Heterogeneous Alkoxide Solution Containing Fine MgO Powder," J. Am. Ceram. Soc., 83, 235-237 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01180.x
  10. Walker Jr. E. H., Owens J. W., Etienne M., and Walker D., "The Novel Low Temperature Synthesis of Nanocrystalline $MgAl_2O_4$ Spinel using "gel" Precursors," Mater. Res. Bull., 37, 1041-1050 (2002). https://doi.org/10.1016/S0025-5408(02)00740-7
  11. Alvar E. N., Rezaei M., and Alvar H. N., "Synthesis of Mesoporous Nanocrystalline $MgAl_2O_4$ Spinel via Surfactant Assisted Precipitation Route," Powder Technol., 198, 275-278 (2010). https://doi.org/10.1016/j.powtec.2009.11.019
  12. Zhang X, "Hydrothermal Synthesis and Catalytic Performance of High-surface-area Mesoporous Nanocrystallite $MgAl_2O_4$ as Catalyst Support," Mater. Chem. Phys., 116, 415-420 (2009). https://doi.org/10.1016/j.matchemphys.2009.04.012
  13. Viparelli, P., Ciambelli P., Lisi L., Ruoppolo G., Russo G., Jean Claude Volta J. C., "Oxidative Dehydrogenation of Propane over Vanadium and Niobium Oxides Supported Catalysts," Appl. Catal. A: Gen., 184, 291-301 (1999). https://doi.org/10.1016/S0926-860X(99)00104-0
  14. Turek W., Krowiak A., "Evaluation of Oxide Catalysts' Properties based on Isopropyl Alcohol Conversion," Appl. Catal. A: Gen., 417-418, 102-110 (2012). https://doi.org/10.1016/j.apcata.2011.12.030
  15. Di Cosimo J. I., Diez V. K., Xu, M., Iglesia E., and Apesteguia, C. R. "Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides," J. Catal., 178, 499-510 (1998). https://doi.org/10.1006/jcat.1998.2161