References
-
Lobera M. P., Tellez C., Herguido J., and Menendez M., "Pt-Sn/
$MgAl_2O_4$ as n-Butane Dehydrogenation Catalyst in a Two-Zone Fluidized-Bed Reactor," Ind. Eng. Chem. Res., 48, 6573-3578 (2009). https://doi.org/10.1021/ie900381p -
Song H. S., Kwon S. J., Epling W. S., Croiset E., Nam S. C. and Yi K. B., "Synthesis Gas Production via Partial Oxidation,
$CO_2$ Reforming, and Oxidative$CO_2$ reforming of$CH_4$ over a Ni/Mg-Al Hydrotalcite-type Catalyst," Clean Technol., 20, 189-201 (2014). https://doi.org/10.7464/ksct.2014.20.2.189 -
Ohi T., Miyata T., Li D., Shishido T., Kawabata T., Sano T., and Takehira K., "Sustainability of Ni loaded Mg-Al Mixed Oxide Catalyst in Daily Startup and Shutdown Operations of
$CH_4$ Steam Reforming," Appl. Catal. A: Gen., 308, 194-203 (2006). https://doi.org/10.1016/j.apcata.2006.04.025 -
Roy S., van Vegten N., Maeda N., and Baiker A., "NOx Storage and Reduction over Flame-made M/
$MgAl_2O_4$ (M = Pt, Pd, and Rh): A Comparative Study," Appl. Catal. B: Environ., 119, 279-286 (2012). - Fornasari G., Glockler R., Livi M., and Vaccari A., "Role of the Mg/Al Atomic Ratio in Hydrotalcite-based Catalysts for NOx Storage/Reduction," Appl. Clay Sci., 29, 258-266 (2005). https://doi.org/10.1016/j.clay.2005.02.002
-
Li W.-C, Comotti M., Lu A.-H., and Schuth F, "Nanocast Mesoporous
$MgAl_2O_4$ Spinel Monoliths as Support for Highly Active Gold CO Oxidation Catalyst," Chem. Commun., 16, 1772-1774 (2006). -
Valant A. L., Garron A., Bion N., Epron F., and Du D., "Hydrogen Production from Raw Bioethanol over Rh/
$MgAl_2O_4$ Catalyst: Impact of Impurities: Heavy Alcohol, Aldehyde, Ester, Acid and Amine," Catal. Today 138, 169-174 (2008). https://doi.org/10.1016/j.cattod.2008.06.013 -
Iqbal M. J., Ismail B., Rentenberger C., and Ipser H, "Modification of the Physical Properties of Semiconducting
$MgAl_2O_4$ by Doping with a Binary Mixture of Co and Zn ions," Mater. Res. Bull., 46, 2271-2277 (2011). https://doi.org/10.1016/j.materresbull.2011.08.061 -
Shiono T., Shiono K., Miyamoto K., and Pezzotti G., "Synthesis and Characterization of
$MgAl_2O_4$ Spinel Precursor from a Heterogeneous Alkoxide Solution Containing Fine MgO Powder," J. Am. Ceram. Soc., 83, 235-237 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01180.x -
Walker Jr. E. H., Owens J. W., Etienne M., and Walker D., "The Novel Low Temperature Synthesis of Nanocrystalline
$MgAl_2O_4$ Spinel using "gel" Precursors," Mater. Res. Bull., 37, 1041-1050 (2002). https://doi.org/10.1016/S0025-5408(02)00740-7 -
Alvar E. N., Rezaei M., and Alvar H. N., "Synthesis of Mesoporous Nanocrystalline
$MgAl_2O_4$ Spinel via Surfactant Assisted Precipitation Route," Powder Technol., 198, 275-278 (2010). https://doi.org/10.1016/j.powtec.2009.11.019 -
Zhang X, "Hydrothermal Synthesis and Catalytic Performance of High-surface-area Mesoporous Nanocrystallite
$MgAl_2O_4$ as Catalyst Support," Mater. Chem. Phys., 116, 415-420 (2009). https://doi.org/10.1016/j.matchemphys.2009.04.012 - Viparelli, P., Ciambelli P., Lisi L., Ruoppolo G., Russo G., Jean Claude Volta J. C., "Oxidative Dehydrogenation of Propane over Vanadium and Niobium Oxides Supported Catalysts," Appl. Catal. A: Gen., 184, 291-301 (1999). https://doi.org/10.1016/S0926-860X(99)00104-0
- Turek W., Krowiak A., "Evaluation of Oxide Catalysts' Properties based on Isopropyl Alcohol Conversion," Appl. Catal. A: Gen., 417-418, 102-110 (2012). https://doi.org/10.1016/j.apcata.2011.12.030
- Di Cosimo J. I., Diez V. K., Xu, M., Iglesia E., and Apesteguia, C. R. "Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides," J. Catal., 178, 499-510 (1998). https://doi.org/10.1006/jcat.1998.2161