• Title/Summary/Keyword: 공진화 알고리즘

Search Result 48, Processing Time 0.039 seconds

퍼지 규칙의 자동 생성을 위한 스키마 공진화 알고리즘 (Schema Co-Evolutionary Algorithm for Automatic Generation of fuzzy Rules)

  • 변광섭;이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.353-356
    • /
    • 2004
  • 비선형 시스템의 제어에서 널리 사용되는 방식이 퍼지 제어기이다. 퍼지 제어기에서 가장 중요한 것은 퍼지 룰의 설계이다. 퍼지 룰을 설계하는 많은 기법들이 제안되어 있는데, 최근 들어 진화 알고리즘에 대한 관심이 증가하고 있다 그 중에서도 공생적 공진화 알고리즘이 최적의 퍼지룰을 찾기 위해 이용되는데, 본 논문에서는 스키마 공진화 알고리즘을 이용한다. 스키마 공진화 알고리즘의 성능을 입증하기 위해, 이동 로봇의 행동제어를 위한 퍼지 제어기를 스키마 공진화 알고리즘을 이용하여 설계하고, 다른 공생적 공진화 알고리즘인 바이러스_진화 유전 알고리즘과 Handa의 공진화에 대해 비교하고 실험한다.

  • PDF

GA-Hard 문제를 풀기 위한 공진화 모델 (Co-Evolutionary Model for Solving the GA-Hard Problem)

  • 박창현;이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.313-316
    • /
    • 2005
  • 공진화 알고리즘은 두 개 이상의 개체군이 상호작용하며 진화하는 알고리즘이다. 기존의 진화 알고리즘이 하나의 개체군으로 구성된 정적인 적합도 지형에서 해를 찾는 방식임에 반해 공진화 알고리즘은 두개 이상의 개체군이 동적인 적합도 지형을 제공하여 더 강건하고 빠른 수렴성을 보인다. 본 논문에서는 GA가 풀기 어려운 GA-hard problem을 풀기 위하여 저자가 제안한 3가지 공진화 모델을 설명한다. 첫번째 모델은 찾고 자하는 해와 환경을 각각 경쟁하는 개체군으로 구성해 진화하는 방법으로 사용자의 환경설정에 의해 지역적 해를 찾는 것을 방지하는 경쟁적 공진화 알고리즘이다. 두 번째 모델은 찾고자하는 해와 이를 보조하는 스키마를 각각 개체군으로 구성해 진화하는 스키마 공진화 알고리즘이다. 세 번째 알고리즘은 해를 구성하는 부분을 두 개의 개체군으로 나누고 두 개체군이 서로 게임을 통해 진화하도록 하는 게임이론에 기반한 공진화 알고리즘이다.

  • PDF

기생체 숙주 이론 기반의 경쟁 공진화 신경망 (Competitive Co-Evolving Neural Network : Host and Parasites)

  • 박정은;박민재;오경환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.142-144
    • /
    • 2003
  • 유전자 알고리즘을 사용하여 신경망의 가중치를 학습하는 방법은 역전파 알고리즘이 가지는 여러 가지 문제점을 해결하기 위해 제안되었으나, 유전자 알고리즘 역시 전역 탐색이 아니기 때문에 실세계의 데이터에 적용하기 어려운 가장 큰 장애 요소인 지역 최소점 문제를 완벽하게 해결할 수는 없다. 이러한 지역 최소점 문제를 완화하기 위해 본 논문에서는 기생체-숙주 공진화 현상을 기반으로 한 유전자 알고리즘을 사용한 경쟁 공진화 신경망 학습 방법을 제시하고 있다. 경쟁 공진화는 서로 다를 개체간의 경쟁적인 진화를 통해 궁극적으로 보다 적합도가 높은 개체가 생성되는 이론을 기반으로 하고 있다. 이러한 경쟁 공진화를 통한 신경망 가중치의 학습이 일반적인 유전자 알고리즘을 사용하여 신경망을 학습시키는 것보다 더욱 우수한 가중치 집단을 탐색할 수 있음을 두 종류의 기계 학습 데이터를 통해 입증하였다.

  • PDF

종족의 분할과 병합을 이용한 효율적 공진화 알고리즘 (An Efficient Coevolutionary Algorithm based on Species Splitting and Merging)

  • 박성진;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권2호
    • /
    • pp.168-178
    • /
    • 2001
  • 진화 알고리즘은 자원 관리, 스케줄링, 패턴 인식 등의 다양한 문제들에 적용되는, 일반적이고 효율적인 최적화 방법이다. 그러나 이러한 진화 알고리즘의 문제점은 탐색해야할 변수가 증가할수록 그에 따른 차원의 증가로 인하여 기하급수적으로 늘어나는 탐색공간에 약하다는 것이다. 이러한 문제점을 해결하기 위해 Potter와 DeJong은 개개의 종족을 독립적으로 진화시킴으로써 탐색공간을 대폭 줄인, 협력 공진화 알고리즘을 제안하였다. 그러나 이것 또한 변수 의존성이 강한 문제들에 대해서는 비효율적인 탐색을 하는 문제점이 있다. 본 논문에서는 종족의 분할과 병합을 이용한 효율적인 공진화 알고리즘을 제안한다. 이 알고리즘은 최적화하려는 변수들이 서로 의존성이 없는 경우에는 종족의 분할을 통하여 탐색공간의 축소의 잇점을 얻고, 최적화하려는 변수들이 서로 의존성이 있는 경우에는 종족의 병합을 통하여 전역탐색을 하도록 한다. 제안하는 알고리즘을 몇 가지 벤치마크 함수 최적화 문제와, 상품 재고 제어문제로 실험하여 현존하는 어떤 공진화 알고리즘 보다도 효율적인 것을 보여준다.

  • PDF

SMGA : 종족의 분할과 병합을 이용한 효율적인 공진화 알고리즘 (SMGA : An Efficient Coevolutionary Algorithm based on Species Splitting and Merging)

  • 도영아;박성진;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.134-136
    • /
    • 2000
  • 진화 알고리즘은 자원 관리, 스케줄링, 퍼지 논리 재어기의 설계 등의 다양한 문제들에 적용되는, 일반적이고 효율적인 최적화 방법이다. 그러나 이러한 진화 알고리즘의 문제점은 탐색해야할 변수의 증가에 따라 차원의 증가로 인하여 탐색공간이 기하급수적으로 늘어난다는 것이다. 이러한 문제점을 해결하기 위해 Potter와 Dejong은 개개의 종족을 독립적으로 진화시킴으로써 탐색공간을 대폭 줄인, 협력 공진화 알고리즘을 제안하였다. 그러나 이것 또한 변수 의존성이 강한 문제들에 대해서는 비효율적인 탐색을 하는 문제점이 있다. 본 논문에서는 종족의 분할과 병합을 이용한 효율적인 공진화 알고리즘을 제안한다. 이 알고리즘은 최적화 하려는 변수들이 서로 의존성이 없는 경우에는 종족의 분할을 통하여 탐색공간의 축소의 이점을 얻고, 최적화 하려는 변수들이 서로 의존성이 있는 경우에는 종족의 병합을 통하여 전역탐색을 하도록 한다. 제안하는 알고리즘을 상품재고 제어 문제(ICP)로 실험하여 현존하는 어떤 공진화 알고리즘보다도 효율적인 결과를 보여준다.

  • PDF

GA-Hard 문제를 풀기 위한 공진화 모델 (Co-Evolutionary Model for Solving the GA-Hard Problems)

  • 이동욱;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.375-381
    • /
    • 2005
  • 일반적으로 유전자 알고리즘은 최적 시스템을 디자인하는데 주로 이용된다. 하지만 알고리즘의 성능은 적합도 함수나 시스템 환경에 의해 결정된다. 두 개의 개체군이 꾸준히 상호작용하고 공진화 하는 공진화 알고리즘은 이러한 문제를 극복할 수 있을 것으로 기대된다. 본 논문에서는 GA가 풀기 어려운 GA-hard problem을 풀기 위하여 저자가 제안한 3가지 공진화 모델을 설명한다. 첫 번째 모델은 찾고자하는 해와 환경을 각각 경쟁하는 개체군으로 구성해 진화하는 방법으로 사용자의 환경설정에 의해 지역적 해를 찾는 것을 방지하는 경쟁적 공진화 알고리즘이다. 두 번째 모델은 호스트 개체군과 기생(스키마) 개체군으로 구성된 스키마 공진화 알고리즘이다. 이 알고리즘에서 스키마 개체군은 호스트 개체군에 좋은 스키마를 공급한다. 세 번째 알고리즘은 두 개체군이 서로 게임을 통해 진화하도록 하는 게임이론에 기반한 공진화 알고리즘이다. 각 알고리즘은 비주얼 서보잉, 로봇 주행, 다목적 최적화 문제에 적용하여 그 유효성을 입증한다.

게임 이론과 공진화 알고리즘에 기반한 다목적 함수의 최적화 (Optimization of Multi-objective Function based on The Game Theory and Co-Evolutionary Algorithm)

  • 김지윤;이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.395-398
    • /
    • 2002
  • 본 논문에서는 ‘다목적 함수 최적화 문제(Multi-objective Optimization Problem MOP)’를 풀기 위하여 유전자 알고리즘을 진화적 게임 이론 적용시킨 ‘내쉬 유전자 알고리즘(Nash GA)’과 본 논문에서 새로이 제안하는 공진화 알고리즘의 구조를 설명하고 이 두 알고리즘의 결과를 시뮬레이션을 통하여 비교 검토함으로써 ‘진화적 게임 이론(Evolutionary Game Theory : EGT)’의 두 가지 아이디어 -‘내쉬의 균형(Equilibrium)’과 ‘진화적 안정전략(Evolutionary Stable Strategy . ESS)’-에 기반한 최적화 알고리즘들이 다목적 함수 문제의 최적해를 탐색할 수 있음을 확인한다.

자동화 장치장의 재정돈 계획 최적화를 위한 협력적 공진화 알고리즘 (A Cooperative Coevolutionary Algorithm for Optimizing Remarshaling Plan in an Automated Stacking Yard)

  • 박기역;박태진;류광렬
    • 한국항해항만학회지
    • /
    • 제33권6호
    • /
    • pp.443-450
    • /
    • 2009
  • 본 논문은 재정돈 계획의 최적화를 위해 협력적 공진화 알고리즘을 이용하는 방법을 제안한다. 재정돈이란 컨테이너 터미널에서 적하 작업시 발생하는 지연을 줄이기 위해 선박에 적하될 컨테이너의 위치를 변경하는 작업이다. 재정돈 계획 수립을 위해서는 적하 시 작업 효율이 최대가 되고 재정돈 시간이 최소가 되도록 컨테이너가 재정돈 후 배치될 장치형태와 재정돈 시 컨테이너를 옮길 순서를 결정해야한다. 협력적 공진화 알고리즘은 주어진 문제가 세부 문제들로 분할 가능할 때 분할된 세부 문제들을 동시에 탐색하여 문제를 효율적으로 해결하는 방법이다. 이에 본 논문에서는 재정돈 계획 문제를 장치형태 결정 문제와 이동 우선순위 결정 문제로 분할하고 협력적 공진화 알고리즘을 적용하여 재정돈 계획을 최적화하였다. 실험결과 문제를 분할한 협력적 공진화 알고리즘이 문제를 분할하지 않는 접근 방법에 비해 더욱 효과적으로 재정돈하는 계획을 수립함을 확인할 수 있었다.

입자군집최적화와 차분진화알고리즘 간의 공진화를 활용한 교섭게임 관찰 (Observation of Bargaining Game using Co-evolution between Particle Swarm Optimization and Differential Evolution)

  • 이상욱
    • 한국콘텐츠학회논문지
    • /
    • 제14권11호
    • /
    • pp.549-557
    • /
    • 2014
  • 근래에 게임이론 분야에서 진화계산법을 사용한 교섭게임 분석은 중요한 이슈 중에 하나이다. 본 논문에서는 이질적인 두 인공 에이전트 간의 공진화를 활용하여 교섭게임을 관찰한다. 두 인공 에이전트를 모델링하기 위해 사용된 전략은 진화전략의 종류인 입자군집최적화와 차분진화알고리즘이다. 교섭게임에서 각 전략이 최선의 결과를 얻기 위한 알고리즘 모수들을 조사하고 두 전략의 공진화를 관찰하여 어느 알고리즘이 교섭게임에 더 우수한지 관찰한다. 컴퓨터 시뮬레이션 실험 결과 입자군집최적화 전략이 차분진화알고리즘 전략보다 교섭게임에서 더 우수한 성능을 보임을 확인하였다.

분할과 병합을 이용한 새로운 공진화 알고리즘 - SMGA (SMGA: A New Coevolutionary Algorithm based on Species Splitting and Merging)

  • 박성진;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.307-309
    • /
    • 2000
  • 진화 알고리즘은 현재까지 다양한 최적화 문제들에 사용되어 왔고, 또한 이러한 최적화 문제들은 효율적으로 해결하기 위하여 많은 진화 알고리즘이 개발되어 왔다. 그러나 이러한 진화 알고리즘들의 공통적인 문제점은 탐색공간의 확대에 대하여 전반적으로 탐색시간이 오래 걸린다는 것이다. 실제로 최적화 해야 할 변수의 증가에 따라 탐색 차원이 증가하므로 탐색 시간도 기하급수적으로 늘어난다. 따라서 최근의 진화 알고리즘에 대한 연구는 탐색공간의 축소나, 진화 속도의 향상에 초점이 맞추어져 있었고, 이러한 경향에 따라 많은 연구성과가 있었다. Potter와 Dejong의 협력 공진화와, Weicker의 적응적 공진화가 바로 그것이다. 그러나 이 방법들도 최적화 해야 할 변수들이 서로 강한 의존성을 가지고 있는 경우나, 대부분의 변수가 서로 의존성을 가지고 있는 경우에는 그다지 좋은 결과를 보이지 못하는 문제점을 가지고 있다. 본 논문에서는 이러한 연구들을 기반으로 하여 각 방법의 단점들을 보완함으로써 효율을 향상시킨 새로운 진화 알고리즘을 제안한다.

  • PDF