• Title/Summary/Keyword: 공장폐수처리

Search Result 138, Processing Time 0.026 seconds

A Study on the Coagulation of Wastewater Containing Fine Silica Particles with the Waste Slurry from Soda Ash Manufacturing Industries (소오다회 제조 공장의 폐슬러리를 이용한 미세 실리카 함유 폐수의 응집에 관한 연구)

  • Jun, Se Jin;Yim, Sung Sam
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1073-1078
    • /
    • 1999
  • The objectives of this study are to examine the applicability of waste slurry from soda ash manufacturing industries as a coagulant for the treatment of wastewater containing fine silica particles, and to reduce the cost of wastewater treatment containing silica. Acceptable water quality can be obtained with a little dosing of waste slurry by gelation before the coagulation process so it could be concluded that the waste slurry from soda ash can be used as a coagulant. Based on the results of experiments, the optimum pH of gelation for silica in wastewater was around five and the treatment process with the gelation of silica could reduce the chemical dosage and waste sludge after coagulation. Dewatering and settling characteristics of the floc after coagulation with the waste slurry are better than those of the floc after coagulation with the lime milk only.

  • PDF

Elimination and Utilization of Pollutants - Part I Microbiological Clarification of Industrial Waste and Its Utilization as Feed Resources - (환경오염원(環境汚染源)의 제거(除去)와 그 이용성(利用性)에 관(關)한 연구(硏究) - 제(報I)1보(第). 미생물(微生物)에 의(依)한 산업폐수(産業廢水)의 정화(淨化) 및 사료자원개발(飼料資源開發)에 개(開)하여 -)

  • Lee, Ke-Ho;Lee, Kang-Heup;Park, Sung-O
    • Applied Biological Chemistry
    • /
    • v.23 no.1
    • /
    • pp.64-72
    • /
    • 1980
  • Industrial wastes from pulp and food plants were treated with microorganisms to clarify organic waste-water and to produce cells as animal feed, and results were summarized as follows. (1) Waste-water from pulp, beer, bread yeast, and ethanol distillation plants contained $1.4{\sim}1.5%$ of total sugar, $0.25{\sim}0.35%$ nitrogen, and biological oxygen demand (BOD) was $400{\sim}25,000$, chemical oxygen demand (COD), $500{\sim}28,000$, and pH, $3.8{\sim}7.0$. The BOD and COD were highest in waste-water from ethanol distillation plants among others. (2) Bacterial and yeast counts were $4{\times}10^4-1{\times}10^9,\;2{\times}10^2-7{\times}10^4/ml$ in waste-water. (3) Bacteria grew better in pulp waste and yeasts in beer, bread yeast, and ethanol distillation waste. (4) Saccharomyces cerevisiae SAFM 1008 and Candida curvata SAFM 70 were the most suitable microorganisms for clarification of ethanol distillation waste. (5) When liquid and solid waste from ethanol distillation were treated with microbial cellulase, xylanase, and pectinase, solid waste was reduced by 36%, soluble waste was increased, and recuding sugar content was increased by 1.3 times which provided better medium than untreated waste for cultivation of yeasts. (6) Optimum growth conditions of the two species of yeast in ethanol distillation waste were pH 5.0, $30^{\circ}C$, and addition of 0.2% of urea, 0.1% of $KH_2PO_4$ and 0.02% of $MgSO_4$. (7) Minimum number of yeast for proper propagation was $1.8{\times}10^5/ml$. (8) C. curvata70 was better than cerevisae for the production of yeast cells from ethanol distillation waste treated with microbial enzymes. (9) S. cerevisiae produced 16 g of dried cell per 1,000ml of ethanol distillation waste and reduced BOD by 46%. C. curvata produced 17.6g of dried cell and reduced BOD by 52% at the same condition. (10) Yeast cells produced from the ethanol distillation waste contained 46-52% protein indicating suitability as a protein source for animal feed.

  • PDF

Effective Treatment of Wastewater from the Electroplating Plant of Cold-mill by using Microorganism (냉연공장 도금공정에서 발생되는 폐수의 효율적인 미생물 처리에 관한 연구)

  • Kim, Sang-Sik;Kim, Hyung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.301-306
    • /
    • 2009
  • This research was carried out to establish the effective treatment condition and characteristic of wastewater from the electroplating plant of cold rolling mill by using microorganism. Alkaline wastewater and acidic heavy metal wastewater accounted for 64%, 30%, respectively, of the total wastewater. Highly concentrated thiocyanate was 53890 mg/L as COD and it was 53% of total COD, even though it was 0.03% of wastewater from the electroplating plant. When treating mixed wastewater with microorganism, it was easy to remove when SCN concentrations of mixed wastewater was 200 mg/L or less. While the treatment effect of COD-causing materials was low at the concentration of 400 mg/L or less, it implies that highly concentrated thiocyanate contains a large amount of slowly biodegradable organics. When treating with mixed wastewater, pH was 7.33 at the beginning, but after 8 hours it increased to 7.99. This is caused by ammonia which is generated when SCN of highly concentrated thiocyanate was degraded by microorganism.

Convergence Study on Organic Sludge Treatment System (유기성 슬러지 처리 시스템에 관한 융합연구)

  • Han, Doo-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.213-217
    • /
    • 2020
  • An eco-friendly water purifier was developed using natural minerals, plants, and sludge from water purification plants. A wastewater complex treatment system using this water purification agent was developed. The wastewater complex treatment system goes through the process of inflow of contaminated water, input of water purification agent, operation of a pressurized flotation device, sludge flotation, sludge collection and treatment water discharge. This device was applied to the removal of green algae in livestock desorption liquid, broiler washing water, factory wastewater, sewage treatment plant and pond to obtain excellent removal rate. The use of natural water purification agents for organic waste purification has not been investigated.

Growth Responses of Crops to Wastes Derived from Some Factories (수종 공장 폐수에 대한 작물의 피해 반응)

  • Kang, Byeung-Hoa;Shim, Sang-In;Lee, Sang-Gak
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.161-165
    • /
    • 1997
  • This experiment were carried out to clarify the effects of several factory wastes on the emergence and seedling growth of five crop species, rice, Chinese cabbage, melon, and tomato. Wastes of three factories treated by several concentrations on the soil in which crop were seeded. In rice seedling experiments, the rice seedlings were treated with factory wastes hydroponically. Factory wastes used in the experiment were obtained from leather, phenol resin, and dye factory. The growth of rice seedlings was inhibited by each factory wastes, but the dry weight of rice seedling was increased by the low concentration below 1/16 dilution of leather factory waste. During 15 days, dry matter accumulation of rice seedlings treated with undiluted factory wastes decreased to 46.0, 51.4, -5.4% of control by treating wastes of phenol resin, leather, and dye factory respectively. The injury of crops by leather factory waste was severe in tomato but slight in barley. Waste of phenol resin factory affects highly both on Chinese cabbage and on melon. When dye factory waste was treated on each crop, all plants died in the treatments of waste solution which diluted to 1/8 of original waste. Tomato and melon were most sensitive crop species to the waste of dye factory. Although the responses of crops to each factory waste were various, the degree of injuries were more higher in vegetables than cereal crops.

  • PDF

분리막에 의한 난분해성 유기용제 폐수의 분류처리공정 개발

  • 황영하;이은영;추종만
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1992.10a
    • /
    • pp.63-73
    • /
    • 1992
  • 환경오염이 심각해 질수록 수자원에 대하여, 생산공정에서 발생되는 폐수를 환경오염 기준치 이내로 처리후 단순 방류하는 소극적인 방법에서 보다 효과적이며 경제적인 처리 방법으로 개선하는 적극적인 인식의 전환을 요청받게 된다. 이것은 생산성에 직결되는 중요한 문제이며 기업의 경쟁력을 강화하는 조건이라 아니 할 수 없다. 더욱이 정부에서는 수자원의 고갈로 상수도 과다 수요업체를 대상으로 하는 오,폐수의 중수도화 정책을 시행할 예정이며, 세금및 상수도료 감면 혜택등으로 실질적인 상수도 절감을 유도하고 있으며, 금년 12월 부터 시행키로 발표된 바 있어, 이와 관련되는 기술의 관심이 그 어느때 보다 높아 지고 있다. 오,폐수 재사용의 기술은, 분류 처리 기술과 고도 처리 기술, 난분해성 폐수의 처리 기술로 크게 나누어 지는데, 당사가 반도체 도금 공장인 A 산업체에 적용한 분리막에 의한 난분해성 유기 용제 폐수의 처리 공법에 대한 연구 개발 실례를 소개하고자 한다.

  • PDF