• 제목/요약/키워드: 공압인공근육

검색결과 17건 처리시간 0.021초

족배굴곡 보조용 외골격 보조기가 보행자의 보행패턴 및 하지근육에 미치는 효과 (Effect of Exoskeleton Orthosis for Assistance of Dorsiflexion Torque in Walking Pattern and Lower-limb Muscle)

  • 오혜진;김경;정구영;정호춘;권대규
    • 재활복지공학회논문지
    • /
    • 제8권3호
    • /
    • pp.177-185
    • /
    • 2014
  • 본 연구에서는 하지마비 장애인의 족하수 방지를 위하여 족배굴곡 보조를 위한 외골격 보조기를 개발하였다. 본 보조기는 인공 근육형 공압 액추에이터를 이용한 동력 전달부, 동력부의 고정을 위한 무릎 관절 착용부 및 보행 신호 검출을 위한 발목 관절 착용부로 구성되었다. 보조기는 무릎 관절 착용부와 발목 관절 착용부에 고정되어 족배굴곡 토크를 발생시켰으며, 발바닥 압력센서를 통해 사용자의 보행 단계를 검출하고, 족배굴곡 보조 타이밍을 감지하도록 하였다. 보행에 이상이 없는 건강한 65세 이상 고령자 7명과 20대 성인 10명을 대상으로 외골격 보조기의 족배굴곡 보조에 대한 성능을 확인한 결과, 인공 근육형 공압 액추에이터의 보조 시 전경골근의 근활성이 감소하는 결과가 나타났다. 향후 연구에서는 하지마비 환자를 대상으로 외골격 보조기의 효과를 검증할 것이다.

  • PDF

$\mu$-합성법에 의한 유연한 조작기의 위치 및 진동제어 (Position and Vibration Control of a Flexible Manipulator Using $\mu$-Synthesis)

  • 박노철;양현석;박영필
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3186-3198
    • /
    • 1996
  • When a robot is to have contact with its enviornment, such as a medi-care robot, it would be advantageous for the robot to have a high compliance. For this reason, a robot having not only a flexible link but also an actuator with compliance, is desirable. This paper is concerned with the position and vibration control of 1 degree of freedom flexible robot using a pneumatic artificial muscle actuator. The dynamics of the manipulator assumed to be and Euler-Bernoulli beam are derived on the basis of the linear mathematical modle. Although this pneumatic artifical muscle actuator has many merits for the compliance robot, it is difficult to make an effective control scheme of this system because of ths nonlinearity and uncertainty on the dynamics of the actuator. By designing a controller using .mu.-synthesis, robust performance against measurement noise, various modeling uncertainties on the dynamics of the servo valve, actuator and mainpulator, is achieved. The effectiveness of the proposed control method is illustrated through simulations and experiments.

일반보행보조기(RGO)와 동력보행보조기(PGO)의 보행시 에너지 소모도 비교 평가 분석 (Comparison of Energy Consumption of Reciprocating Gait Orthosis(RGO) and Powered Gait Orthosis(PGO) during Gait)

  • 강성재;류제청;문무성
    • 한국정밀공학회지
    • /
    • 제25권8호
    • /
    • pp.104-110
    • /
    • 2008
  • The aim of this study ultimately is verifying that PGO gait is more efficient than RGO fur paraplegics because the air muscle assists hip flexion power in heel off movement. The gait characteristics of the paraplegic wearing the PGO or RGO are compared with that of a normal person. PGO with air muscles was used to analyze the walking of patients with lower-limb paralysis, and the results showed that the hip joint flexion and pelvic tilt angle decreased in PGO. In comparison to RGO gait, which is propelled by the movements of the back, PGO uses air muscles, which decreases the movement in the upper limb from a stance phase rate of 79$\pm$4%(RGO) to 68$\pm$8%. The energy consumption rate was 8.65$\pm$3.3 (ml/min/Kg) for RGO, while it decreased to 7.21t2.5(ml/min/Kg) for PGO. The results from this study show that PGO decreases energy consumption while providing support for patients with lower-limb paralysis, and it is helpful in walking for extended times.

유연한 공압인공근육로봇의 강건제어 (Robust control of a flexible manipulator with artificial pneumatic muscle actuators)

  • 박노철;박형욱;박영필;정승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1704-1707
    • /
    • 1997
  • In this work, position and vibratiion control of a two-link manipulator with one flexible link, which an unkoun but bounded payload mass and two pair of artificial muscle-type penumatic actuators, are investgated. A flexible link robot has advantages over a figid link robot in the sense that it is much safer when it cones into contact with its environment, including humans. Furthermore, for the sake of safety, it would be more desirabel if an actuator could deliver required force while maintaining proper compliance. An artificial muscle-type penumatic actuator is adequate for such cases. In this study, a controller based on singular perturbation method, adaptive and sliding mode contro, and .mu.-synthesis is developed. The effectiveness of the proposed control scheme is confirmed through simulations and experiments.

  • PDF

공압형 인공근육으로 구동되는 상극구동의 다중 동시 사양 제어 (Multiple Simultaneous Specification Control of Antagonistic Actuation by Pneumatic Artificial Muscles)

  • 강봉수
    • 로봇학회논문지
    • /
    • 제6권1호
    • /
    • pp.34-41
    • /
    • 2011
  • This paper presents a frequency-response test performed on an antagonistic actuation system consisting of two Mckibben pneumatic artificial muscles and a pneumatic circuit. A linear model, capable of estimating the dynamic characteristics of the antagonistic system in the operating range of pneumatic artificial muscles, was optimally calculated based on frequency-response results and applied to a multiple simultaneous specification control scheme. Trajectory tracking results showed that the presented multiple simultaneous specification controller, built experimentally by three PD typed sample controllers, satisfied successfully all required control specifications; rising time, maximum overshoot, steady-state error.

공압 고무 인공근육을 장착한 주관절 보조기 피드백 제어 시 근력 특성 (Characteristics of the Muscular Activities on the Feedback Control of Elbow Orthosis Using Pneumatic Rubber Artificial Muscle)

  • 홍경주;김경;권대규;김동욱;김남균
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.725-728
    • /
    • 2008
  • An elbow orthosis with a pneumatic rubber actuator has been developed to assist and enhance upper limbs movements and has been examined for the effectiveness. The effectiveness of the elbow orthosis was examined by comparing muscular activities during alternate dumbbell curl motion wearing and not wearing the orthosis. The subjects participated in the experiment were younger adults in their twenties. The subjects were instructed to perform dumbbell curl motion in a sitting position wearing and not wearing orthosis in turn and a dynamometer was used to measure elbow joint torque outputs in an isokinetic mode. Orthosis was controlled using contractile muscle force that is measured from force sensor through cDAQ-9172 board. The air pressure of the pneumatic actuator was 0.3MPa the most suitable air pressure. For the analysis of muscular activities, Electromyography of the subjects was measured during alternate dumbbell curl motion. The experiment results showed that the muscular activities wearing the elbow orthosis were reduced. With this, we confirmed the effectiveness of the developed elbow orthosis.

인공공압근육 엑츄에이터를 이용한 족관절 보조기의 족저굴곡 토크 평가 (Evaluation of Plantarflexion Torque of the Ankle-Foot Orthosis Using the Artificial Pneumatic Muscle)

  • 김경;권대규;강승록;박용군;정구영
    • 한국정밀공학회지
    • /
    • 제27권6호
    • /
    • pp.82-89
    • /
    • 2010
  • Ankle-foot orthosis with an artificial pneumatic muscle which is intended for the assistance of plantarfelxion torque was developed. In this study, power pattern of the device in the various pneumatics and the effectiveness of the system were investigated. The pneumatic power was provided by ankle-foot orthosis controlled by user‘s physiological signal, that is, muscular stiffness in soleus muscle. This pneumatic power can assist plantarflexion torque of ankle joint. The subjects performed maximal voluntary isokinetic plantarflexion motion on a biodexdynamometer in different pneumatics, and they completed three conditions: 1) without wearing the orthosis, 2) wearing the orthosis with artificial muscles turned off, 3) wearing the orthosis activated under muscular stiffness control. Through these experiments, we confirmed the effectiveness of the orthosis and muscular stiffness control using the analyzing isokinetic plantarflexion torque. The experimental results showed that isokinetic torques of plantarflexion motion of the ankle joints gradually increased in incremental pneumatic. The effectiveness of the orthosis was -7.26% and the effectiveness of the muscular stiffness control was 17.83% in normalized isokinetic plantarflexion torque. Subjects generated the less isokinetic torques of the ankle joints in wearing the orthosis with artificial muscles turned off, but isokinetic torques were appropriately reinforced in condition of wearing the orthosis activated under muscular stiffness control(17.83%) compared to wearing the orthosis(-7.26%). Therefore, we respect that developed powered orthosis is applied in the elderly that has weak muscular power as the rehabilitation equipment.