• Title/Summary/Keyword: 공압구동기

Search Result 32, Processing Time 0.017 seconds

Study on Dynamic Characteristics and Performance of Tip Jet Rotor Using Small-scaled Rotor (축소로터를 이용한 Tip Jet 로터의 성능 및 동특성 연구)

  • Kwon, Jae Ryong;Baek, Sang Min;Rhee, Wook;Lee, Jae Ha
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.30-36
    • /
    • 2018
  • In this study, a small-scaled test system for a tip jet rotor was developed to contribute to the research on unmanned compound rotorcraft. The performance and dynamic characteristics of the tip jet rotor were investigated using the test system. The diameter of the tip jet rotor was set to 2m in consideration of the size of the test site and the pneumatic supply capacity of the. The rotating speed of the rotor was controlled by the pressure of the compressed air. The thrust and forces during the rotor rotation were measured using a load measuring device. A hydraulic actuator was installed for the dynamic test and full-bridge strain gages were attached to the root of each blade to measure the flap, lag, and torsion-wise responses generated when the rotor is excited by the actuator. The performance and dynamic characteristic tests were conducted at various rotor speeds and blade pitches. In order to check the validity of the test results, the results were also compared with the CAMRAD II analysis.

Establishment of the Heart Failure Model in Swine for the Experiment of the Pneumatic Ventricular Assist Device (공압식 심실보조기의 실험을 위한 돼지에서의 심부전 모델의 개발)

  • 박성식;서필원;이상훈;강봉진;문상호;김삼현
    • Journal of Chest Surgery
    • /
    • v.36 no.3
    • /
    • pp.123-130
    • /
    • 2003
  • Background: In order to develop the acute heart failure model for the animal experiment of the pneumatic ventricular assist device, we decided to use young pig whose coronary artery distribution is almost the same as humans and also very cheap in price. The purpose of this study is to develop stable, reproducible acute ischemic heart failure model in swine using coronary artery ligation method. Material and Method: Five young pigs whose weights are the same as adult humans are under experiment. Each pig was under endotracheal intubation and connected to a mechanical ventilator. Through left lateral thoracotomy, we exposed the heart and induced ischemic heart failure by coronary artery ligation. The ligation began at the distal part of the left anterior descending coronary artery. After 5 minutes of initial ligation we reperfused the artery and then re-ligated. Before and after each ligation-reperfusion procedure we assessed the left ventricular end-diastolic pressure, arterial pressure, and cardiac index. We also measured left ventricular end-diastolic dimension, end-systolic dimension, fractional shortening, ejection fraction using intraoperative epicardial echocardiography. After appropriate heart failure was established with sequential (from distal part of LAD to proximal location) ligation-reperfusion-ligation procedure, we inserted the ventricular assist device and operated. Result: We established stable acute ischemic heart failure in 3 of 5 young pigs with this sequential ligation-reperfusion-ligation procedure, and could maintained 50% less ejection fraction before the procedure according to intraoperative epicardial echocardiography. We also observed no ventricular arrhythmia usually associated with simple coronary artery ligation in large animals and no cardiac arrest associated with ventricular arrhythmia or myocardial stunning. In pathologic specimen, we observed scattered ischemic myocardium in all around the ischemic field induced by coronary artery ligation. Conclusion: Under the concept of ischemic preconditioning, we developed safe and reproducible acute ischemic heart failure model in swine using sequential coronary artery ligation-reperfusion-ligation method.