We conducted laboratory simulations of deep vertical drilling into the earth's crust to induce borehole breakouts and investigated their potential use for estimating in situ stress magnitudes in Westerly granite and Berea sandstone. Our experiments consisted of two major stages, a series of triaxial tests and borehole-breakout formation tests under a wide range of far-field stresses. We derived the Mohr-Coulomb, Nadai and Mogi failure criteria from the triaxial test results. Each criterion was compared with the stress condition at breakout boundaries. We concluded that the well known Mohr-Coulomb criterion is not compatible with the stress condition at breakout failure. On the other hand, polyaxial (truly triaxial) failure criteria such as the Nadai criterion for Berea sandstone and the Mogi criterion for Westerly granite were much more suitable for predicting breakout failure zone. Such failure criteria appeared to enable the reliable estimation of the magnitude of one of two horizontal principal stresses if the other one is known.
This paper performs laboratory experiments for borehole stability considering temperature and true triaxial stress condition, and observes a thermo-mechanical behavior of the rock under stress and temperature conditions of deep underground. China yellow sandstone and Hwangdeung granite specimens were used to perform a true triaxial compression test. Mechanical tests were carried out under nine confining pressure conditions, and thermo-mechanical tests using granite samples were carried out under six confining pressure conditions at 60-100℃. In the mechanical tests, maximum principal stress at borehole breakout was proportional to intermediate principal stress. In the thermo-mechanical tests, it was confirmed that thermal stress is added to the stress field of the borehole with the increase in temperature, resulting in additional breakout progress. To analyze the results of the laboratory experiment, Mogi-Coulomb failure criterion was used. The results of traditional triaxial compression test on cylindrical specimens and borehole breakout under true triaxial compressions matched well with Mogi-Coulomb failure criterion.
An explosion modeling technique was developed by using the spherical discrete element code, PFC3D, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a PFC3D particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). According to this concept, the explosion pressure is applied to the wall particles by the scheme of radius expansion/contraction of inner-hole particles. The output wall force is compared to the input hole pressure in every time step, and a correction routine is activated to control the radius multiplier of the inner-hole particles. A comparative blast simulation far a cement mortar block of $80\times90\times80mm$ was conducted by using the conventional explosion modeling method and the new one. The results of the simulation are presented in a qualitative fashion.
Crack-controlled method which utilizes the dynamic energy such as explosives and propellent gases have been applied to the development of mineral resource and oil and civil engineering. It is necessary to consider the fracture processes associated with the material properties and external forces to control crack propagation using borehole pressure. To investigate the influence of the applied borehole pressure waveform on the crack propagation in rock masses having different material properties, a no-free surface model was used, consisting of a borehole in rock with a continuous boundary. Loading rates ranging from 1 to 100MPa/${\mu}s$ with different rock mass properties was employed to investigate the loading rate dependency of fracture patterns in the rock mass.
The source of rock breakage by explosive blasting is the energy released from an explosive. It is transmitted to the surrounding rock mass causing various types of fracture of rock material. The reaction of explosives and the resulting action on the surrounding rock mass are completed in very short tine, making it almost impossible to observe the processes occurring in the interior of the rock mass. In this study several input parameters are investigated by numerical modelling of blast source and dynamic response of rock mass. It is shown that damping coefficient and rising time are major parameters affecting dynamics response of rock mass.
Investigation methods of cut slope are conducted generally only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitation of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of 4 boleholes and BIPS (Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed highway slope. As the results of BIPS, we could decide potential sliding surface in the slope and conducted to check slope stability. And decided slope stability measures.
For moderately jointed to massive rock masses, the failure and deformation behaviors around an excavated opening are absolutely influenced by the initial rock stress and strength of in-situ rock mass. The localized and progressive brittle failure around an opening does not mean whole collapse of an excavated opening. But, for many cases, it may induce temporary stopping of excavation works and reexamination of the current supporting system, which can result in delay of the entire construction works and additional construction cost. In this paper, the characteristics of the brittle failure around an opening with stress level and tunnel shape was studied by the biaxial compressive test using scaled specimen and by the numerical simulation with $PFC^{2D}$. The biaxial test results were well coincided with the stress induced failure patterns around the excavated openings observed and monitored in the in-situ condition. For the circular part of the opening wall, the stress induced cracks initially occurred at the wall surface in the direction of the minimum principal stress and contributed to the localized notch shaped failure region having a certain range of angle. But for the corner and straight part of the opening wall, the cracks initiated at sharp corners were connected and coalesced each other and with existing micro cracks. Further they resulted in a big notch shaped failure region connecting two sharp corners.
An explosion modeling technique was developed by using the spherical discrete element code, $PFC^{3D}$, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a $PFC^{3D}$ particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). A test blast was conducted for a RC column, whose dimension was $600\times300\times1800$ in millimeters. The initial velocities of the surface movements were measured to be in the range of $14\~18\;m/s$ with the initiation times of $1.5\~2.0m$. Then the blasting procedure was simulated by using the modeling technique. The particle assembly representing the concrete was made of cement mortar and coarse aggregates, whose mirco-properties were obtained from the calibration processes. As a result, the modeling technique developed in this study made it possible for the burden to move with the velocity of $17\~24\;m/s$, which are slightly higher values compared to those of the test blast.
The steel pipe of steel-concrete composite drilled shafts increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, pile loading tests were performed to analyze the field applicability of a steel-concrete composite drilled shafts. The test ground consisted of 5~7 m thick soil underlying rock mass. The test piles consisted of two steel-concrete composite drilled shafts, which were the concrete filled steel pipe piles with the diameter of 0.508 m, and a concrete pile with the same diameter. The test results showed that the boundary between the upper steel composite section and the lower concrete section was structurally weak and needs to be reinforced by using a inner steel cage. If the boundary is located in deep depth, which is not influenced by lateral load, the allowable strength of the lower concrete section increases, so an economical design can be performed by increasing the design load of steel-concrete composite drilled shafts.
The peculiarity of end-expanded soil nailing method(EESNM) is in fixing the wedge-type steel body spreaded by collars and grouting its surroundings by cement milk within soils, after extending hole bottom over drilling hole diameter with top drill bit. The present study was done to establish the effect of this method. Laboratory model test were carried out to investigate the behavior characteristics with the performance of the pull-out test and failure experiment, after preparing soil test box having 1,300mm length, width 1,000mm, and height 1,100mm, and the same experimental condition was set up to compare with the general soil nailing method(GSNM). The pull-out force of about 23 percentage was increased, and the horizontal displacements 1.2 from 9.1 percentage in soil-nailed wall decreased in EESNM compare with GSNM. The axial force acting on nail increased considerably at load level over 7 ton in EESNM and 5 ton in GSNM. The predicted failure line from the maxima analyzed by axial tensile strain located at long distance from soil-nailed wall in EESNM. The EESNM demonstrated the superiority of reinforcement effect in comparison with GSNM from the results above mentioned.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.