• Title/Summary/Keyword: 공룡 발자국

Search Result 34, Processing Time 0.023 seconds

Bird Tracks from the Gyeongsang Basin of the Korean Peninsula: A Paradise of Mesozoic Birds (중생대 새의 낙원 한반도 경상 분지에서 산출되는 새 발자국 화석)

  • Kim, Jeong Yul;Kim, Kyung Soo;Lim, Jong Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.1
    • /
    • pp.40-61
    • /
    • 2009
  • The Cretaceous Gyeongsang Supergroup, composed of clastic sediments mostly deposited in the lacustrine and fluvial environment, is widely distributed in the southern part of the Korean Peninsula. Diverse fossils of plants, molluscs, insects, footprints of dinosaurs, pterosaurs and birds, and eggs, bones, and teeth of dinosaurs have been found from the Gyeongsang Supergroup. New types of dinosaur, pterosaur, and bird tracks recently discovered from the Gyeongsang Supergroup attract great attention from the world. Several tracksites of dinosaurs and birds were designated as Natural Monument and nationally conserved, and many efforts have given to them for nomination of UNESCO World Heritage. Bird tracks from the Gyeonsang Supergroup are Koreanaornis hamanensis, Jindongornipes kimi, Goseongornipes markjonesi, Ignotornis yangi, Uhangrichnus chuni, and Hwangsanipes choughi, which correspond approximately one third of Mesozoic bird tracks recorded from the world. The Gyeongsang Basin of the Korean Peninsula yields world most diverse bird tracks which may be called a paradise of Mesozoic birds and they are important natural heritage providing significant information about evolution and paleogeographic distribution of birds.

Application of 3D Digital Documentation to Natural Monument Fossil Site (천연기념물 화석산지의 3차원 디지털 기술 적용)

  • Kong, Dal-Yong;Lim, Jong-Deock;Wohn, Kwang-Yeon;Ahn, Jae-Hong;Kim, Kyung-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.492-502
    • /
    • 2011
  • 20 fossil sites of numerous fossil sites in Korea have been designated as Natural Monument for protection and conservation. Many of the sites which is located at the coastal area have been gradually disfigured by natural weathering, erosion and human activity. Thus the conservation of the original form and the documentation for the original figure are necessary. In this study, we applied 3D digital documentation to Natural Monument No. 394, Haenam Uhangri dinosaur, pterosaur, and bird footprint fossil site, for maintaining the original form of the dinosaur footprints. We were able to obtain the 3D digital data on two dinosaur footprint sites, a high resolution distributional map, and more accurate digital data of the dinosaur footprints applied the rendering method by ambient occlusion. 3D digital data on the dinosaur footprints is worth for the conservation and research data, moreover content for applying to the various fields such as to make 3D brochure, interactive contents, and so on.

Sauropod Tracks and Trackways from the Cretaceous Kyokpori Formation, Buangun, Jeollabukdo (전라북도 부안군 백악기 격포리층에서 산출된 용각류 발자국 화석과 보행열)

  • Kim, Kyung Soo;Kim, Jeong Yul;Kong, Dal Yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.1
    • /
    • pp.4-19
    • /
    • 2009
  • Total 57 sauropod tracks are found from the Cretaceous Kyokpori Formation in the Buangun, Jeollabukdo, Korea. Six sauropod trackways in second stratigraphic level of three stratigraphic levels were recognized and described. The type of sauropod trackways is a wide-gauge trackway which has been generally in Cretaceous sauropod trackways. On the basis of foot length, trackway orientations, and preservation, all of the tracks are thought to have been made by small sauropods moving not only towards and away from the shoreline but also along the shoreline of lacustrine environment.

SHRIMP U-Pb Ages of Dinosaur and Bird Footprints found in Cretaceous Formation of Saok Island, Jeollanam-do, South Korea (전라남도 사옥도 백악기층에서 발견된 공룡과 새발자국 화석의 SHRIMP U-Pb 연대)

  • Kim, Cheong-Bin;Kim, Uijin;Park, Minsu;Hwang, Koo-Geun;Lee, Keewook
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.141-149
    • /
    • 2017
  • The geology of Saok island area in Jeollanam-do can be divided into 4 lithologic types: Jurassic granite, Cretaceous sedimentary rocks, acidic tuff and acidic dikes. In the Saok island area, dinosaur and web-footed bird footprints, arthropod trackway and silicified wood were found recently in the Cretaceous sedimentary rocks which composed of alternating light grey sandstone, shale and mudrock. The fossil-bearing sedimentary rock is overlain by an acidic tuff, and the sedimentary rock and acidic tuff are cut by acidic dykes. In order to constrain the depositional age of the Cretaceous sedimentary rocks in Saok island area, SHRIMP U-Pb zircon ages were determined in the tuffaceous sandstone and overlying acidic tuff. Zircon U-Pb ages of the sandstone and tuff are $83.58{\pm}0.86$ and $79.80{\pm}0.75Ma$, respectively, which belong to the Campanian of the Late Cretaceous. The U-Pb age of the acidic tuff indicates the eruption time of acidic tuff and thus the minimum age of the fossil-bearing sedimentary rocks in this area. Therefore, the formation age of the dinosaur and web-footed bird footprints can be constrained between 83.6 and 79.8 Ma.

Applied Mineralogy for the Conservation of Dinosaur Tracks in the Goseong Interchange Area (35번 고속도로 고성 교차로 지역 공룡발자국의 보존을 위한 응용광물학적 연구)

  • Jeong Gi Young;Kim Soo Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.189-199
    • /
    • 2004
  • Cretaceous sedimentary rocks bearing dinosaur tracks in the Goseong interchange area were studied for their conservation and public display in the aspect of applied mineralogy. Black clay layers alternate with silt layers in the sedimentary rocks. The verical and horizontal fissures are commonly filled with calcite veinlets, supergenetic iron and manganese oxides. The rocks are composed of quartz, albite, K-feldspar, calcite, chlorite, illite, muscovite, and biotite, with minor apatite and rutile. Silt layers are relatively rich in calcite and albite, whereas clay layers are abundant in quartz, illite, and chlorite. Al, Fe, Mg, K, Ti, and P are enriched in the clay layers, while Ca, Na, and Mn in silt. Most of trace elements including V, Cr, Co, Ni, Cs, Zr, REE, Th, and U are enriched in clay layers. Inorganic carbon are present in silt layers as calcite, while organic carbon in black clay layers. The black clay layers were partly altered to yellow clay layers along the fissures, simultaneously with the decrease of organic carbon. Selective exfoliation of clay-rich black and yellow clay layers, calcite matrix of silt layers and calcite infillings of fissures are estimated as the major weakness potentially promoting chemical and physical degradation of the track-bearing rock specimens.