• Title/Summary/Keyword: 공력효과

Search Result 198, Processing Time 0.02 seconds

Aerodynamic Load Analysis of a Floating Offshore Wind Turbine Considering Platform Periodic Motion (플랫폼의 주기 운동을 고려한 부유식 해상 풍력터빈의 공력 성능 해석)

  • Kim, Youngjin;Yu, Dong Ok;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.368-375
    • /
    • 2018
  • In the present study, aerodynamic load analysis for a floating off-shore wind turbine was conducted to examine the effect of periodic platform motion in the direction of 6-DOF on rotor aerodynamic performance. Blade-element momentum method(BEM) was used for a numerical simulation, the unsteady airload effects due to the flow separation and the shed wake were considered by adopting a dynamic stall model based on the indicial response method. Rotor induced downwash was estimated using the momentum theory, coupled with empirical corrections for the turbulent wake states. The periodic platform motions including the translational motion in the heave, sway and surge directions and the rotational motion in the roll, pitch and yaw directions were considered, and each platform motion was applied as a sinusoidal function. For the numerical simulation, NREL 5MW reference wind turbine was used as the target wind turbine. The results showed that among the translation modes, the surge motion has the largest influence on changing the rotor airloads, while the effect of pitch motion is predominant for the rotations.

Aerodynamic and Structural Design on Small Wind Turbine Blade Using High Performance Configuration and E-Glass/Epoxy-Urethane Foam Sandwich Composite Structure (고성능 형상 및 유리섬유/에폭시-우레탄 샌드위치 구조를 사용한 소형 풍력발전 블레이드의 공력 및 구조설계)

  • Chang-Duk Kong;Jo-Hyug Bang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.70-80
    • /
    • 2004
  • This study proposes a development result for the 1-kW class small wind turbine system, which is applicable to relatively low wind speed regions like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was peformed by the finite element method. Moreover both structural safety and stability were verified through the full- scale structural test.

An Experimental Study on the Aerodynamic Characteristics of a Stealth Configuration (스텔스 형상 공력특성에 관한 실험적 연구)

  • Oh, See-Yoon;Kim, Sang-Ho;Ahn, Seung-Ki;Cho, Cheol-Young;Lee, Jong-Geon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.962-968
    • /
    • 2008
  • An experimental study of the aerodynamic characteristics of a stealth configuration, the test techniques developed for the testing in the Low Speed Wind Tunnel of Agency for Defense Development(ADD-LSWT), and the lessons learned have been presented. The main objectives of this test are to determine the aerodynamic characteristics of a stealth configuration and to measure the flow field characteristics with a 5-hole pressure probe. The test results are discussed and the effect of the leading edge shape on the aerodynamic characteristics is also given.

Numerical Analysis of Aerodynamics Characteristics of Two Dimensional Airfoil Section with Elastic Flap (탄성 플랩을 갖는 2차원 날개 단면 공력 특성 전산해석)

  • Won, Chang-Hee;Lee, Joo-Yong;Lee, Sungsu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 2014
  • This study presents computational analysis of aerodynamic characteristics of two-dimensional airfoil sections with elastic flap attached at the trailing edge. EDISON_CFD was utilized to simulate the incompressible turbulent flow around the foil and MIDAS_IT was employed to estimate the deflection of the flap under the pressure loading. Using iterative procedure, the terminal deflection was estimated and the resulting lift-drag ratio indicates that the favorable effect of the flap is expected within certain amount of angle of attack.

Mixing Augmentation with Cooled Pylon Injection in Scramjet Combustor (냉각 파일런 분사를 이용한 스크램제트 연소기 내 혼합증대)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • The mixing characteristics of pylon injection in a Scramjet combustor and effects of film cooling to protect pylon from air-heating were investigated. Three-dimensional Navier-Stokes equations with $k-{\omega}$ SST turbulence model were used. Fuel hydrogen and air were considered as coolants. There were remarkable improvements of penetration and mixing rate with the pylon injection. There was also over-heating on the front surface of the pylon without film cooling. The coolant injected parallel to the front surface of the pylon protects the pylon from over-heating.

Papers : Transonic Wing Planform Design Using Multidisciplinary Optimization (논문 : 다분야 통합 최적설계 기법을 이용한 날개 기본 형상 설계)

  • Im,Jong-U;Gwon,Jang-Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.20-27
    • /
    • 2002
  • Aircraft design requires the intergration of several disciplines, inculding aerodynamics, structures, controls. To achieves advances in performance, each technology, or discipline must be more accurate in analysis and must be more highly intergrated. One of the important interdisciplinary interactions in mordern aircraft design is that of aerodynamics and structures. In this study, for increasing accuracy in each discipline's analysis, CFD for aerodynamic analysis and FEM for structurral analysis was used and, for considering important interdisciplinary interactions, aeroelastic effect was considered. As optimization algorithm, PBIL algorithm was used for global optima and was parallelized to alleviate the computational burden. The efficiency and accuracy of the present method was assesed by range maximiziation of reference of reference wing.

Experimental Study on the Aerodynamic Characteristics of a High-speed Ground Vehicle Moving in a Channel (채널 내를 운행하는 초고속 지상 운행체의 공력특성에 관한 실험적 연구)

  • Choi, Dong-Soo;Kim, Dong-Hwa;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.72-81
    • /
    • 2004
  • A Wind tunnel test for a high speed ground vehicle was conducted to investigate the aerodynamic interactions between the vehicle and a solid channel. The free stream velocity was 30m/see and Reynolds number per unit length was $3.1{\times}10^5/m$. Experimental devices such as a variable channel ground and guide way were used for the test. As the vehicle was close to the channel ground and guide way, lift was significantly increased, drag was slightly decreased and pitching moments were restricted to augment static stability. Using smoke-wire, flow visualization was made to confirm these results by comparing the channel and non-channel flow characteristics of the vehicle. Under the influence of the channel ground and guide way, the flow beneath the vehicle was not discharged outside wing end plates, which was the major reason of the increase in lift of the vehicle.

Aerodynamic Design Optimization of Airfoils for WIG Craft Using Response Surface Method (반응표면법을 이용한 지면효과익기 익형의 공력 설계최적화)

  • Kim, Yang-Joon;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.18-27
    • /
    • 2005
  • Airfoils with improved longitudinal static stability were designed for a WIG craft through aerodynamic design optimization. The response surface method is coupled with NURBS-based shape functions and Navier-Stokes flow analysis. The procedure runs in the network-distributed design framework of commercial-code based automated design capability to enhance computational efficiency and robustness.Lift maximization design maintaining similar static margin to a DHMTU airfoil successfully produced a new airfoil shape characterized by pronounced front-loading and the well-known reflexed aft-camber line. Another airfoil design of lower variation in pitching moment during take-off showed weakened front-loaded characteristics and hence decreased lift slightly. Investigations using the present design methodology on an existing optimization result based on potential flow analysis and NACA-type geometry generation demonstrated significance of carrying various geometry generations and more realistic flow analysis with optimization.

Numerical Study about the Effect of Continuous Blowing On Aerodynamic Characteristics of NACA 0015 Airfoil (연속적 블로잉에 따른 NACA 0015 익형 공력특성 변화에 대한 수치적 연구)

  • Choe, Seong-Yun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.1-11
    • /
    • 2006
  • The effects of continuous blowing on flow control and stall suppression for flows over a NACA 0015 airfoil at low Reynolds numbers were numerically investigated through its parameter variation on unstructured meshes. The aerodynamic force and moment variations due to flow control were examined, along with the stall angle-of-attack change for stall suppression. The results showed that blowing with relatively strong jet increases lift at the cost of drag increment below stall angle. Continuous blowing delays flow stall when it is implemented near the leading edge. When the blowing jet was aligned along the flow direction on the airfoil, the favorable flow control effect was most significant below the stall angle of attack.

Effect of the Leading Edge and Vein Elasticity on Aerodynamic Performance of Flapping-Wing Micro Air Vehicles (날갯짓 초소형 비행체의 앞전 및 시맥 탄성이 공력 성능에 미치는 영향)

  • Yoon, Sang-Hoon;Cho, Haeseong;Shin, Sang-Joon;Huh, Seokhaeng;Koo, Jeehoon;Ryu, Jaekwan;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.185-195
    • /
    • 2021
  • The flapping-wing micro air vehicle (FW-MAV) in this study utilizes the cambered wings made of quite flexible material. Similar to the flying creatures, the present cambered wing uses three different materials at its leading edge, vein, and membrane. And it is constrained in various conditions. Since passive rotation uses the flexible nature of the wing, it is important to select an appropriate material for a wing. A three-dimensional fluid-structure interaction solver is developed for a realistic modeling of the cambered wing. Then a parametric study is conducted to evaluate the aerodynamic performance in terms of the elastic modulus of leading edge and vein. Consequently, the elastic modulus plays a key role in enhancing the aerodynamic performance of FW-MAVs.