• Title/Summary/Keyword: 공력효과

Search Result 198, Processing Time 0.024 seconds

Aerodynamic Characteristics of an Insect-type Flapping Wings (곤충 모방 플래핑 날개의 공력 특성)

  • Han, Jong-Seob;Chang, Jo-Won;Choi, Hae-Cheon;Kang, In-Mo;Kim, Sun-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.311-314
    • /
    • 2007
  • Aerodynamic characteristics of an insect-type flapping wings were carried out to obtain the design parameters of Micro Hovering Air Vehicle. A pair of wing model was scaled up about 200 times and applied two pairs of 4-bar linkage mechanism to mimic the wing motion of a fruit fly(Drosophila). To verify the Weis-Fogh mechanism, a pair of wings revolved on the 'Delayed Rotation'. Lift and drag were measured in conditions of the Reynolds number based on wing tip velocity of about 1,200 and the maximum angle of attack of 40$40^{\circ}$. Inertia forces of a wing model were also measured by using a 99.98% vacuum chamber and subtracted on measured data in air. In the present study, high lift effect of Weis-Fogh mechanism was appeared in the middle of upstroke motion.

  • PDF

Improvement of the Aerothermal Environment for a 90° Turning Duct by an Endwall Boundary Layer Fence (90° 곡관에서의 경계층 판을 이용한 열유동 환경 개선)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • An endwall boundary layer fence technique was adapted to improve the aerothermal environment of a gas turbine passage. The shape optimization of the fence was performed to maximize the improvement. The turbine passage was simulated by a $90^{\circ}$ turning duct (ReD=360,000). The main purpose of the present investigation was to focus on finding a endwall boundary layer fence with minimum total pressure loss in the passage and heat transfer coefficient on the endwall of the duct. Anothor objective function was to minimize the area on the endwall of the duct. An approximate optimization method was used for the investigation to secure the computational efficiency. Results indicated that a significant improvement in aerodynamic environment can be achieved through the application of the fence. Improvement of the thermal environment was smaller than that of the aerodynamic enviroment.

Impact of the Aerodynamic Characteristics of Twin Buildings on Wind Responses (트윈 빌딩의 공력 특성이 풍응답에 미치는 영향 평가)

  • Kim, Bub-Ryur
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The wind responses of twin buildings are determined by the characteristics of wind loads and the dynamic characteristics of the structural systems of the buildings. In this study, the characteristics of wind pressure that influence wind responses were identified for two different spacings between the twin buildings using a wind tunnel test and the proper orthogonal decomposition (POD) method. Structural dynamic characteristics were also identified using 3D structural system modeling. The double modal transformation method was utilized to evaluate the characteristics of wind pressure for across-wind and along-wind conditions and the effect of the dynamic characteristics of each structure on the wind responses. The channeling and vortex effects were identified through the POD method. Across-wind loads were significantly affected by the spacings between the twin buildings, whereas along-wind loads were minimally affected. Similarly, while using the double modal transformation method, a significant difference was noticed in case of the cross-participation coefficients in the across-wind direction condition for the different spacings between the buildings; however, the along-wind direction condition showed negligible difference. Therefore, the spacing between the two buildings plays a more important role in across-wind responses compared to along-wind responses.

Real-Time Estimation of Control Derivatives for Control Surface Fault Detection of UAV (실시간 조종미계수 추정에 의한 무인비행기 조종면 고장검출)

  • Lee, Hwan;Kim, Eung-Tae;Choi, Hyoung-Sik;Choi, Ji-Young;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.999-1005
    • /
    • 2007
  • In case of an abnormal condition of control surface, the real-time estimation of aerodynamic derivatives are required for the reconfigurable control system to be flight for missions or return to the head office. The goal of this paper is to represent a technique of fault detection to the control surface as a base research to the fault tolerant control system for safety improvement of UAV. The real-time system identification for the fault detection to the control surface was applied with the recursive Fourier Transform and verified through the HILS and flight test. The failures of the control surface are detected by comparing the control derivatives in fault condition with the normal condition. As a result from the flight test, we have confirmed that the control derivatives of fault condition less than about 50% in the normal condition.

A Wind Tunnel Study on the Static Stability Characteristics of Light Sport Aircraft (스포츠급 경항공기의 정안정 특성 풍동시험 연구)

  • Kim, Jong-Bum;Jang, Young-Il;Kwon, Ky-Beom;Chung, Hyoung-Seog;Cho, Hwan-Kee;Kim, Sang-Ho;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.711-717
    • /
    • 2012
  • During the conceptual design phase of a light sport aircraft, the wind tunnel tests were conducted to investigate the static stability of newly-designed configuration. The 1/5 scale-down wind tunnel model consisted of fuselage, main wing, vertical tail and horizontal tail. The main wing and tails were able to be attached or detached from the fuselage. The aerodynamic forces and moments acting on the 6 different configurations compounding each component were measured by using the internal balance system and their static stability derivatives were derived. With these experimental data, the baseline lift and drag characteristics as well as the effects of each component to the longitudinal, directional and lateral static stability were quantitatively analyzed.

An Experiment Study on Sideslip Angle Effect of Lambda Wing Configuration (람다 날개 형상의 옆미끄럼각 효과에 대한 실험적 연구)

  • Shim, HoJoon;Park, Seung-O;Oh, Se-Yoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.224-231
    • /
    • 2015
  • An experimental study on aerodynamic coefficients of a lambda wing configuration was performed at the low speed wind tunnel of Agency for Defense Development. The main purpose of this study was to investigate the effects of sideslip angle on various aerodynamic coefficients. In the case of $0^{\circ}C$ sideslip angle, nose-up pitching moment rapidly increases at a specific angle of attack. This unstable pitching moment characteristic is referred to as pitch break or pitch up. As the sideslip angle increases, the pitch break is found to be generated at a higher angle of attack. Rolling moment is found to show similar behavior pattern to 'pitch break' style with angle of attack at non-zero sideslip angles. This trend gets severer at greater sideslip angles. Yawing moment also shows substantial variation of the slope and the unstable directional stability with sideslip angles at higher angles of attack. These characteristics of the three moments clearly implies the difficulty of the flight control which requires efficient control augmentation system.

Study on the Influence of Fungi for Thermal Protective Cork-based Exterior Insulator (열방호용 코르크계 외부 인슈레이션 재료의 곰팡이 영향 연구)

  • Chung, Sang Ki;Park, Hee Moon;Kang, Eun Hye;Kim, Hyung Geun;Kim, Yun Chul;Park, Young Chul;Park, Byeong Yeol;Choi, Dong Hyun;Lee, Seung Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.933-935
    • /
    • 2017
  • This paper deals with the influence of fungi for the thermal protective cork-based exterior insulator which protect a missile system from aerodynamic loads and heating during flight of missile. We consider the adhesion of cork-based composite on the composite motor case which fabricated by filament winding process. We also consider the importance of the requirement analysis for effective, successful system development under given system conditions. In order to develop the basic requirement analysis for the thermal protective cork-based exterior insulator, an experimental requirement analysis was accomplished, and some experimental comparing results, the study for preventing fungi are presented.

  • PDF

Comparison and Validation Study on Computational Fluid Dynamics and Wind Tunnel Test Results of Standard Dynamics Model (표준 동안정 모델의 전산유체해석 및 풍동시험 결과 비교검증)

  • Cho, Donghyurn;Kim, Seung Pil;An, Eunhye;Choi, Younseok;Roh, Jisoo;Chung, Hyoung Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.217-225
    • /
    • 2017
  • This research represents comparison and validation of static aerodynamic results in different wind tunnel organizations and EFD-CFD results. KAFA conducted wind tunnel tests with Standard Dynamics Model(SDM) which is based on the NRC model, the same configuration of KARI; and then compared and analyzed similarities and differences of the data from KARI and NRC results for verifying the accuracy of wind tunnel tests. Also, We compared the result of CFD with that of wind tunnel tests and examined strakes effect in static characteristics which are attached on the forward fuselage of SDM for investigating the cause of some discrepancies. From this analysis, there are some discrepancies in Cm tendency between EFD-CFD and it did not show the big difference of aerodynamic characteristics by strake effects. Thus, we need to research additionally for analyzing the different cause of some discrepancies such as vortex structures by the rear strut or intake of SDM and regenerating grid resolution of CFD.

Effects of Various Rates of Nitrogen, Phosphorus, and Potassium on Fertilization Response of Flue-Cured Tobacco (질소(窒素), 인산(燐酸), 가리(加里)의 시비비율(施肥比率)이 황색종연초(黃色種煙草)의 시비반응(施肥反應)에 미치는 영향(影響))

  • Jeong, Hun-Chae;Cho, Seong-Jin;Lee, Yun-Hwan;Yuk, Chang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.1
    • /
    • pp.56-62
    • /
    • 1986
  • Fertilization response on production and quality of flue-cured tobacco as to different level of nitrogen, phosphorus, and potassium were studied in a field experiment. The results were summarized as follows: 1. Growth and yield of flue-cured tobacco were significantly better in higher nitrogen fertilization levels, regardless of soil fertility, but the negative correlation was recognized between the quality of leaves and the amounts of nitrogen application. While, both fertilizers of phosphorous and potassium did not have should little effect on the tobacco yield and quality. 2. The optimum ratio of N, P, and K fertilizer applications were decided by the appearance of the proper yield and the best quality of tobacco leaves. The proportion of N:P:K was 2:1:4. 3. The single effect (Complete plot minus Non-fertilized plot) of N, P, and K on yield and quality of cured leaf was greatly affected by nitrogen, but the combined effect (Nutrient deficiency plot minus Non-fertilzier plot) of that were only slightly affected by P and K.

  • PDF

Performance Evaluation of Stator-Rotor Cascade System Considering Flow Viscosity and Aeroelastic Deformation Effects (유동점성 및 공탄성 변형효과를 고려한 스테이터-로터 케스케이드 시스템의 성능평가)

  • Kim, Dong-Hyun;Kim, Yu-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.72-78
    • /
    • 2008
  • In this study, advanced (fluid-structure interaction (FSI)) analysis system has been developed in order to predict turbine cascade performance with blade deformation effect due to aerodynamic loads. Intereference effects due to the relative movement of the rotor cascade with respect to the stator cascade are also considered. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation k-ω SST turbulence models are solved to accurately predict fluid dynamic loads considering flow separation effects. A fully implicit time marching scheme based on the (coupled Newmark time-integration method) with high artificial damping is efficiently used to compute the complex fluid-structure interaction problem. Predicted aerodynamic performance considering structural deformation effect of the blade shows somewhat different results compared to the case of rigid blade model. Cascade performance evaluations for different elastic axis positions are importantly presented and its aeroelastic effects are investigated.