• Title/Summary/Keyword: 공력형상

Search Result 366, Processing Time 0.021 seconds

A Numerical Study About the Aerodynamic Characteristics of Elliptic Airfoils (타원형 익형의 공력특성에 관한 수치적 연구)

  • Choe, Seong-Yun;Gwon, O-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.1-10
    • /
    • 2006
  • In the present study, the aerodynamic characteristics of elliptic airfoils are investigated numerically based on the RANS equations and the S-A turbulent model on unstructured meshes. Unlike the NACA series airfoil sections, elliptic airfoils have a relatively small leading edge radius and a rounded trailing edge. Also the maximum thickness is located in the middle of the chord. This geometric characteristics are responsible for the difference in the aerodynamic characteristics from those of NACA family airfoils. To identify the aerodynamic characteristics of elliptic airfoils, the results were compared with those of NACA series airfoils with a same maximum thickness. The effect of airfoil thickness variation on the aerodynamic characteristics were also investigated.

중형 수평축 풍력발전용 복합재 회전날개의 설계방법 개선연구

  • 공창덕;정석훈;백종진;장병섭;안주연
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.26-26
    • /
    • 2000
  • 본 연구에서는 풍력발전기용 복합재 회전날개의 설계단계에서 공력 설계 후 결정되어진 공력 형상을 기초로 하여 구조적 형상설계를 수행 할 때에 여러 가지 경우의 형상을 해석하여 이중 설계요구조건에 적합한 경우를 채택하는 시행착오 방법으로 인한 비효율적인 요소를 배재 하기 위해 고전 적층판 이론을 기초로 한 해석 프로그램을 사용하여 예비설계를 수행하는 수정된 설계절차를 제안하였으며 예비설계단계에서 신속하고 신뢰성 있는 해석결과를 얻을 수 있었다.(중략)

  • PDF

Aerodynamic Shape Optimization of the Impulse Turbine using Numerical Analysis (수치해석을 이용한 충동형 터빈의 공력형상 최적화)

  • Lee E. S.;Seol W. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.191-196
    • /
    • 2005
  • For the improvement of aerodynamic performance of the turbine blade in a turbopump for the liquid rocket engine, the optimization of turbine profile shape has been studied. The turbine in a turbopump in this study is a partial admission of impulse type, which has twelve nozzles and supersonic inflow. Due to the separated nozzles and supersonic expansion, the flow field becomes complicates and shows oblique shocks and flow separation. To increase the blade power, redesign of the blade shape using CFD and optimization method was attempted. The turbine cascade shape was represented by four design parameters. For optimization, genetic algorithm based upon non-gradient search has been selected as a optimizer. As a result, the final blade has about 4 percent more blade power than the initial shape.

  • PDF

AERODYNAMIC SHAPE OPTIMIZATION OF THE SUPERSONIC IMPULSE TURBINE USING CFD AND GENETIC ALGORITHM (CFD와 유전알고리즘을 이용한 초음속 충동형 터빈의 공력형상 최적화)

  • Lee E.S.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.54-59
    • /
    • 2005
  • For the improvement of aerodynamic performance of the turbine blade in a turbopump for the liquid rocket engine, the optimization of turbine profile shape has been studied. The turbine in a turbopump in this study is a partial admission of impulse type, which has twelve nozzles and supersonic inflow. Due to the separated nozzles and supersonic expansion, the flow field becomes complicate and shows oblique shocks and flow separation. To increase the blade power, redesign ol the blade shape using CFD and optimization methods was attempted. The turbine cascade shape was represented by four design parameters. For optimization, a genetic algorithm based upon non-gradient search hue been selected as an optimizer. As a result, the final blade has about 4 percent more blade power than the initial shape.

A Numerical Study on Aerodynamic Characteristics of Bumpy Airfoil in a Low Reynolds Number Flows (저 레이놀즈수 유동에서 Bumpy Airfoil의 공력 특성 연구)

  • Go, Geon;Lee, Su-Ho;Kim, Hui-Jae;Lee, Do-Hyeong
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.521-526
    • /
    • 2014
  • 현대에 이르러 초경량 무인 비행기에 대한 많은 연구가 진행되고 있다. 이러한 비행체는 저레이놀즈수 영역에서 사용되는 특성으로 인해, 경계층 내에서 박리현상과 난류영역으로의 천이 등과 같은 여러 복합적인 현상을 발생시킴으로써 비행체의 공력특성에 큰 영향을 미친다. Bumpy Airfoil은 저레이놀즈수 유동에서의 이와 같은 문제를 해결하기 위해 제안된 익형이다. 따라서 본 논문은 전산열유체해석 프로그램인 EDISON_전산열유체를 이용하여 Bumpy Airfoil 형상에 대한 공력특성을 연구하였고, 발생하는 양항비를 원 익형과 비교하였다. 비압축성 조건 내에서, 공력 성능 향상을 위한 Bumpy Airfoil의 형상 변수로 Bump 개수와 높이를 선정하여 받음각에 따른 유동장을 분석하고 양항비를 수치해석 및 고찰하였다.

  • PDF

An Experimental Study on the Aerodynamic Characteristics of a Stealth Configuration (스텔스 형상 공력특성에 관한 실험적 연구)

  • Oh, See-Yoon;Kim, Sang-Ho;Ahn, Seung-Ki;Cho, Cheol-Young;Lee, Jong-Geon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.962-968
    • /
    • 2008
  • An experimental study of the aerodynamic characteristics of a stealth configuration, the test techniques developed for the testing in the Low Speed Wind Tunnel of Agency for Defense Development(ADD-LSWT), and the lessons learned have been presented. The main objectives of this test are to determine the aerodynamic characteristics of a stealth configuration and to measure the flow field characteristics with a 5-hole pressure probe. The test results are discussed and the effect of the leading edge shape on the aerodynamic characteristics is also given.

Numerical Study of Aerodynamics of Turbine Rotor with Leading Edge Modification Near Hub (허브 측 선단 수정에 따른 터빈 로터의 공력 특성에 대한 수치적 연구)

  • Kim, Dae Hyun;Lee, Won Suk;Chung, Jin Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1007-1013
    • /
    • 2013
  • This study aims to analyze the aerodynamics when the geometry of the turbine rotor is modified. The turbine used in this study is a small engine used in the APU of a helicopter. It is difficult to improve the performance of small engines owing to the structural weakness of the blade tip. Therefore, the improvement of the hub geometry is investigated in many ways. The working fluid of a turbine is a high-temperature and high-pressure gas. The heat transfer rate of the turbine surface should be considered to avoid the destruction of blade owing to the heat load. The SST turbulence model gives an excellent prediction of the aerodynamic behavior and heat transfer characteristics when the numerical simulations are compared with the experimental results. In conclusion, the aerodynamic efficiency is improved when a bulbous design is applied to the leading edge near the hub. The endwall loss is reduced by 15%.

Analysis of Aerodynamic Noise Generation from Pantograph Using Panhead Models of Simple-Geometry and Its Reduction (팬헤드의 단순 형상 모델을 이용한 판토그라프 공력소음 발생 특성 분석 및 저감 방안)

  • Yi, Suk-Keun;Yang, Won-Seok;Koh, Hyo-In;Park, Junhong
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.531-536
    • /
    • 2012
  • This study presents a result on aero-acoustic characteristics of pantograph panheads. To analyze the fluid flow around the panhead and resulting sound radiation, simple models of panhead were used in the numerical simulations called Lattice-Boltzmann method. The simulation results were verified using the wind tunnel test. The main aerodynamic noise was generated from the vortex shedding which is characterized by the Strouhal number, flow speed and geometry. The reduction in the radiated noise with simultaneously achieving increased lifting force was implemented for the simple rectangular geometry used in this study. Also, it was shown that the radiated sound power was significantly reduced by minimizing vortex shedding using through-holes or streamline shapes.

A Study of Aerodynamic Modelling for Fin Unfolding Motion Analysis (공력면 전개 모사를 위한 공력 모델링 연구)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.420-427
    • /
    • 2008
  • For simulation of a fin unfolding motion for the various aerodynamic conditions, equations and moments applying to the unfolding fin were modelled. Aerodynamic roll moment consists of the static roll moment and the damping moment, which were obtained through wind tunnel tests and numerical analyses respectively. Panel method was used to compute the roll damping coefficient with deflected fin, whose angle was equivalent to angle of attack due to the deployment motion. Roll damping coefficient is a function of angle of attack, sideslip angle, and deployment angle but not of angular velocity of deployment. Simulation with aerodynamic damping model gave more similar deployment time compared to fin deployment test results.