• Title/Summary/Keyword: 공랭식

Search Result 57, Processing Time 0.029 seconds

Preventing Freezing of Condensate inside Tubes of Air-Cooled Condenser (공랭식 응축기 관내 응축수 동결 방지에 관한 연구)

  • Joo, Jeong-A;Hwang, In-Hwan;Cho, Young-Il;Lee, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.811-819
    • /
    • 2012
  • An air-cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air-cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air-cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred.

소형(600l/min 급) 공랭식 건식진공펌프 기술 개발 연구

  • Yu, Jae-Gyeong;Gang, Min-Jeong;Gang, Sang-Baek
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.221-221
    • /
    • 2012
  • 최근 진공 산업은 반도체 산업의 급속한 발전과 더불어 진공 산업이 핵심기술로 부각되고 있으며, 진공 산업의 발전이 고부가가치를 창출하는 산업으로 발전하고 있는 추세이다. 이에 (유)우성진공 기술연구소에서는 국내에서 개발이 전무한 소형급 600l/min. 급의 배기속도를 가지는 공랭식 건식진공펌프 개발과 더불어 중소기업 혁신기술 개발사업의 성공적인 수행으로 인해 상용화 단계에 있다. 본 연구에서는 소형(600l/min. 급) 공랭식 건식진공펌프에 개발 과정 및 성능에 대해 소개하고자 한다. 우선, 여타 건식진공펌프와는 달리 냉각방식이 수냉식이 아니라 공랭식 이라는 점에서 에너지 절감 및 설치 공간 제약이 없으며, 유지 비용을 절감할 수 있는 장점을 가지며, 국내에서는 소형급의 건식진공펌프가 없는 관계로 시장성을 높게 평가하고 있다. 소형급 공랭식 건신진공펌프의 냉각효율을 고려하여 하우징을 알루미늄 합금으로 제작을 하였으며, 냉각핀을 적절하게 배치하여 압축열을 효과적으로 방출하기 위한 구조가 될 수 있도록 설계하였고, 냉각팬에 의한 공랭효과를 극대화하기 위해 펌프 스킨을 사용하여 공기 유로를 형성토록 하였다. 또한, 루츠의 형상 및 각 단의 압축효율을 고려한 최적의 로터를 설계하기 위해 Involute Curve를 이용한 3-Lobe형 로터를 설계하였으며, 로터와 로터간의 Clearance를 유지 할 수 있도록 설계하였다. 향후 최적화된 로터 설계기술과 이형재질(알루미늄과 주철)간 열팽창이 고려된 적절한 clearance 유지기술을 적용하여 안정적인 배기속도 600l/min.와 도달진공도 0.005 torr를 가지는 소형 공랭식 건식드라이펌프를 상용화 하고자 한다. 또한 성공적인 과제 종료 및 기술 개발에 따라 건식진공펌프 시장에 신기술 개발 확산에 따른 기업들 간의 기술 경쟁력 촉진을 통한 국가 기술력 향상을 기대해 볼 수 있다.

  • PDF

Selection of Number of Fans in an Air-Cooled Condenser of a 150 MW Thermal Power Plant according to Ambient Air Temperature (대기온도 변화에 따른 150 MW 화력발전소용 공랭식 복수기 송풍기수 선정)

  • Hwang, Yong-Hoon;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Lee, Jae-Heon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.10 no.4
    • /
    • pp.24-28
    • /
    • 2014
  • During this study, number of fan by ambient air temperature that condenser pressure satisfies steam turbine exhaust pressure condition with intervals of $3^{\circ}C$ within the 150 MW thermal power plant site temperature range of $-17.1^{\circ}C$ to $36.7^{\circ}C$ was reviewed. An air cooled condenser changes its operating pressure influenced by cooling air circulation amount by atmospheric temperature and number of fan. For stable power plant operation, these were confirmed to maximize a quantity of air-cooled condenser fans at above or equal from design ambient temperature and to reduce an amount of circulating air to an air cooled condenser by depending on a quantity of fan considering exhaust pressure operation condition of a steam turbine at below design ambient temperature.

  • PDF

Study on Performance Improvement Air Cooled Condenser Considering Ambient Condition (대기 조건에 따른 공랭식 응축기 성능 저하 개선 연구)

  • Cha, Hun;Ryu, Gwang-Nyeon;Kim, Jung-Rae
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.201-207
    • /
    • 2015
  • Air cooled condenser for power plant is used at inland area of desert or mountainous area because condenser coolant like sea water is not necessary. However, the performance of air cooled condenser is influenced by ambient condition such as wind speed and air temperature. Therefore, various devices have been designed to improve the performance of air cooled condenser. In this study, the CFD analysis for air cooled condenser was carried out according to wind speed and wind screen configuration. As wind speed increased from 3m/s to 7m/s, the fan flow rate was reduced about 15.76% and the rise of inlet air temperature was 5.55 degree of Celsius. When the suitable wind screen is equipped, the fan flow rate went up about 5.18% and inlet air temperature dropped by 2.08 degree of Celsius in comparison with original case without wind screen at 7m/s wind speed.

Performance Enhancement and Recovery Method of Open Cathode PEMFC (오픈 캐소드형 고분자전해질 연료전지의 성능향상과 회복기법)

  • Lee, Kitaek;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.118-124
    • /
    • 2017
  • An air cooling, open cathode type polymer electrolyte membrane fuel cell (PEMFC) has the advantages of system simplification and cost effectiveness. Open cathode PEMFC could suffer from reduced performance due to the membrane dehydration in low humidity of air. Effects of the cathode air flow rate, anode purge interval and long term storage on PEMFC performance were investigated in this work. Fan voltage is an important factor on air cooling PEMFC performance because the cathode air flow rate and stack temperature were controlled by fan voltage. The dead ended anode (DEA) method was applied to increase hydrogen usage. Periodical purge was used to discharge accumulated water and gas. The influence of long term non-operating condition on PEMFC performance degradation due to the membrane dehydration was also studied and the quick recovery method was developed.

System design of an air-cooled 3-stage reciprocating air compressor and performance testing (공랭식 3단 왕복동 공기압축기의 시스템 설계 및 성능시험)

  • Lee, An-Seong;Kim, Yeong-Cheol;Jeong, Yeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1380-1391
    • /
    • 1997
  • A 150 m$^{3}$/hr, 30 kg/cm$^{2}$, air-cooled 3-stage reciprocating air compressor is designed to be used in starting large diesel engines. A basic design procedure is presented to meet the targeted pressure and flow rate, and especially the volumetric efficiency. Temperature and stress analyses of the cylinder are performed using FEM modelings. The dynamics of valve system is analyzed and stress at the valve seat due to valve impact is evaluated. To reduce friction loss and wear at the compressor engine system, tribological design practices are suggested. Fin-type coolers are designed to dissipate generated compression heat at each stage. Finally, a prototype is manufactured and performance test is carried out utilizing an air tank. Performance results are compared to the design targets, other foreign specifications, and some quality standards.

A Study on the Improvement of Performance for Centralized Air Conditioning System by Using Air-Cooled Air Conditioner - The Case of Mokpo National Maritime University - (공랭식 에어컨을 이용한 중앙 집중 공조시스템의 성능 개선에 관한 연구 - 실습선 새누리호를 중심으로 -)

  • Kim, Hong-Ryel;Han, Seung-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.207-212
    • /
    • 2013
  • In this study, distributed the ship's Centralized Air Conditioning System the way an individual to replace the air conditioning system by using Air-cooled air conditioner. Research results, Individually separated air conditioning system complement the heat source control and thermal efficiency problems and improves the efficiency of the device was confirmed. In addition, under the same conditions refrigeration capacity and coefficient of performance of the device, an average of about 3 %, 23 ~ 26 %, higher, Chilled Water Plants Compressor power consumption is about 12 % lower. Also while heating under the same conditions, power consumption is about 33.5 % lower. Therefore Individually Separated Air Conditioning System greatly contributed to the improved performance of the device and living spaces for comfortable temperature and humidity control as well as heating source could be obtained.