• Title/Summary/Keyword: 공기 추출

Search Result 282, Processing Time 0.028 seconds

An Experimental Study on Feature Selection Using Wikipedia for Text Categorization (위키피디아를 이용한 분류자질 선정에 관한 연구)

  • Kim, Yong-Hwan;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.2
    • /
    • pp.155-171
    • /
    • 2012
  • In text categorization, core terms of an input document are hardly selected as classification features if they do not occur in a training document set. Besides, synonymous terms with the same concept are usually treated as different features. This study aims to improve text categorization performance by integrating synonyms into a single feature and by replacing input terms not in the training document set with the most similar term occurring in training documents using Wikipedia. For the selection of classification features, experiments were performed in various settings composed of three different conditions: the use of category information of non-training terms, the part of Wikipedia used for measuring term-term similarity, and the type of similarity measures. The categorization performance of a kNN classifier was improved by 0.35~1.85% in $F_1$ value in all the experimental settings when non-learning terms were replaced by the learning term with the highest similarity above the threshold value. Although the improvement ratio is not as high as expected, several semantic as well as structural devices of Wikipedia could be used for selecting more effective classification features.

Investigation of Transient Performance of An Auxiliary Power Unit Microturbine Engine (보조동력용 마이크로터빈 엔진에 대한 과도성능 해석)

  • Son, Ho-Jae;Kim, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-28
    • /
    • 2007
  • The easiest way to see the phenomena of compressor surge is to show the static and dynamic operation characteristic on the map. Its operation zone will be restricted by the surge limit and, static and transient process must have some margin for it. Effect of rotor moment of inertia, air/gas volumes and heat transfer are factors to cause the transition from the static line. In case a large volume such as heat exchanger exists in the system it will exert a substantial influence to dynamic characteristics. In the present paper, influence of air volume bled from the compressor exit on transient process is investigated with an example of an auxiliary power unit micro-turbine engine. Turbine mass, pressure ratio, rotation speed, power and moment are calculated based on mass and work conservation. Result from the present study can give guidance to design the control system. A computer program is developed to calculate the dynamic process using the MathCAD commercial software.

A Study on the Stabilization of a System for Big Data Transmission of Intelligent Ventilation Window based on Sensor and MCU (센서 및 MCU기반 지능형 환기창 빅데이터전송용 시스템 안정화에 관한 연구)

  • Ryoo, Hee-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.551-558
    • /
    • 2021
  • In this paper, we made the integrated intelligent air ventilation of the actuator module that can be remotely controlled based on IoT and sensors. we implemented a ventilation window system by configuring an algorithm design and a driving circuit to control the operation of the actuator to open and close the ventilation port based on a predetermined number of data that detects indoor gas/CO2/humidity temperature and outdoor fine dust related indoor/outdoor environment. It is difficult to store, manage, and analyze data due to the large number of sensors and conditions for the transmission data of indoor air circulation module. The remote monitoring and remote wireless control screens were constructed to automate the separation and operation conditions by extracting and managing the state. We apply MQTT to enhance big data transmission and construct the system using Rocket MQ to ensure safe transmission of operational big data against system errors.

A Study on Smoke Detection using LBP and GLCM in Engine Room (선박의 기관실에서의 연기 검출을 위한 LBP-GLCM 알고리즘에 관한 연구)

  • Park, Kyung-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.111-116
    • /
    • 2019
  • The fire detectors used in the engine rooms of ships offer only a slow response to emergencies because smoke or heat must reach detectors installed on ceilings, but the air flow in engine rooms can be very fluid depending on the use of equipment. In order to overcome these disadvantages, much research on video-based fire detection has been conducted in recent years. Video-based fire detection is effective for initial detection of fire because it is not affected by air flow and transmission speed is fast. In this paper, experiments were performed using images of smoke from a smoke generator in an engine room. Data generated using LBP and GLCM operators that extract the textural features of smoke was classified using SVM, which is a machine learning classifier. Even if smoke did not rise to the ceiling, where detectors were installed, smoke detection was confirmed using the image-based technique.

Air-Processed Efficient Perovskite Solar Cell via Antisolvent Additive Engineering (안티솔벤트 첨가제 공정에 의한 대기 중 고효율 페로브스카이트 태양전지 제작)

  • Se-Yeong Baek;Seok-Soon Kim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.128-133
    • /
    • 2024
  • Although antisolvent-assisted crystallization is one of the promising processes to produce high-quality perovskite films, general antisolvents such as chlorobenzene (CB) have toxic and volatile properties. In addition, CB is not suitable to control the crystallization of perovskite in the atmospheric air. In this work, isopropyl acetate (IA) is used as an eco-friendly antisolvent to demonstrate air-processed perovskite solar cells, and ethyl-4-cyanocinnamate (E4CN) with a cyano group, carbonyl group, and aromatic ring is introduced in IA to improve the performance and stability of devices. Defects at the surface and grain boundaries of the perovskite layer, such as un-coordinated Pb2+ and iodine, can be decreased resulting from the interaction of E4CN and perovskite, and thus reduced recombination and enhanced carrier transport can be expected. As a result, the perovskite device with E4CN achieves a high maximum power conversion efficiency (PCE) of 18.89% and outstanding stability, maintaining 60% of the initial efficiency for 300 h in the air without any encapsulation.

Building Wind Corridor Network Using Roughness Length (거칠기길이를 이용한 바람통로 네트워크 구축)

  • An, Seung Man;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.101-113
    • /
    • 2015
  • The purpose of this study is increasing ventilation network usability for urban green space planning by enhancing its practicality and detail. A ventilation network feature extraction technique using roughness length($z_0$) was proposed. Continuously surfaced DZoMs generated from $z_0$(cadastral unit) using three interpolations(IDW, Spline, and Kriging) were compared to choose the most suitable interpolation method. Ventilation network features were extracted using the most suitable interpolation technique and studied with land cover and land surface temperature by spatial overlay comparison. Results show Kriging is most suitable for DZoM and feature extraction in comparison with IDW and Spline. Kriging based features are well fit to the land surface temperature(Landsat-7 ETM+) on summer and winter nights. Noteworthy is that the produced ventilation network appears to mitigate urban heat loads at night. The practical use of proposed ventilation network features are highly expected for urban green space planning, though strict validation and enhancement should follow. (1) $z_0$ enhancement, (2) additional ventilation network interpretation and editing, (3) linking disconnected ventilation network features, and (4) associated dataset enhancement with data integrity should technically preceded to enhance the applicability of a ventilation network for green space planning. The study domain will be expanded to the Seoul metropolitan area to apply the proposed ventilation network to green space planning practice.

Anti-wrinkle Effect of Morinda citrifolia (Noni) Extracts (노니 추출물의 주름개선 효과연구)

  • Lee, Jung-Noh;Kim, Sang-Woo;Yoo, Young-Kyoung;Lee, Ghang-Tai;Lee, Kun-Kook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.4 s.59
    • /
    • pp.227-231
    • /
    • 2006
  • Wrinkle formation is mainly attributed to the environmental factors such as UV rays, air pollution, smoking and stress etc. Especially, UV rays induce premature skin aging which is characterized by deep wrinkle, leathery dryness etc. Recently, researches on the wrinkle formation and its prevention have been the main theme in cosmetics fields. We have studied the various plant extracts having anti-wrinkle effects and finally showed that Noni (Morinda citrifolia) extracts have the efficacy of promoting the type I collagen synthesis in normal human fibroblast, using PICP assay. We purified one active compound from Noni extracts and identified its structure. It was identified as 6,7-Dimethoxy-2H-1-Benzopyran-2-one; scopoletin by $^1H-NMR,\;^{13}C-NMR,$ IR, Mass analysis. Scopoletin increased collagen synthesis in a dose dependent manner (89.5% at $0.2{\mu}g/mL$). In order to verify the anti-aging effectiveness of the cream containing 3% noni extracsts, we performed the in vivo test with some female volunteers for 12 weeks. It reduced the signs of aging, especially face wrinkles. From these results, we conclude that the noni extracts could be used as an useful anti-wrinkle agent.

Effects of Soil Temperature on Biodegradation Rate of Diesel Compounds from a Field Pilot Test Using Hot Air Injection Process (고온공기주입 공법 적용시 지중온도가 생분해속도에 미치는 영향)

  • Park Gi-Ho;Shin Hang-Sik;Park Min-Ho;Hong Seung-Mo;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.45-53
    • /
    • 2005
  • The objective of this study is to evaluate the effects of changes in soil temperature on biodegradation rate of diesel compounds from a field pilot test using hot air injection process. Total remediation time was estimated from in-situ biodegradation rate and temperature for optimum biodegradation. All tests were conducted by measuring in-situ respiration rates every about 10 days on highly contaminated area where an accidental diesel release occurred. The applied remediation methods were hot air injection/extraction process to volatilize and extract diesel compounds followed by a bioremediation process to degrade residual diesels in soils. Oxygen consumption rate varied from 2.2 to 46.3%/day in the range of 26 to $60^{\circ}C$, and maximum $O_2$ consumption rate was observed at $32.0^{\circ}C$. Zero-order biodegradation rate estimated on the basis of oxygen consumption rates varied from 6.5 to 21.3 mg/kg-day, and the maximum biodegradation rate was observed at $32^{\circ}C$ as well. In other temperature range, the values were in the decreasing trend. The first-order kinetic constants (k) estimated from in-situ respiration rates measured periodically were 0.0027, 0.0013, and $0.0006d^{-1}$ at 32.8, 41.1, and $52.7^{\circ}C$, respectively. The estimated remediation time was from 2 to 9 years, provided that final TPH concentration in soils was set to 870 mg/kg.

Characteristics of fresh mortar with particle size and replacement ratio of copper slag (동제련 슬래그의 입도 및 잔골재 치환율 변화에 따른 시멘트 모르타르의 특성)

  • Hong, Chang Woo;Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • It is estimated that over 2 million tons of non-ferrous wastes are generated after refining. Up to now, most researches were focused on extracting precious metals and there were very few research on the utilization of the slag byproduct. In this study, we studied to evaluate whether copper slag could be used as aggregates in concrete. Fresh mortar were evaluated on the particle size and replacement ratio of the copper slag with river-sand. Experimental results indicated that flow, air content and drying shrinkage of concrete varied with particle size, which confirmed that proper classification of copper slag is very important. And, setting time and unit weight of the concrete increased with replacement ratio. When particle size of the slag was similar to the river-sand, concrete with copper slag showed slump, air content, setting time, drying shrinkage and unit weight became larger compared to the concrete using river-sand only. Therefore, it is believed that proper classification and replacement ratio should be optimized for the effective use of slag in concrete.

Development of a PTV Algorithm for Measuring Sediment-Laden Flows (유사 흐름 측정을 위한 입자추적유속계 알고리듬의 개발)

  • Yu, Kwon-Kyu;Muste, Marian;Ettema, Robert;Yoon, Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.841-849
    • /
    • 2005
  • Two-phase flows, e.g. sediment-laden flow and bubbly flow, have two different flow profiles; flow velocity and sediment velocity. To measure velocity distributions of two-phase flows, it is necessary to use sophisticated instruments which can separate velocity profiles of two-phases. For bubbly flows, PIV (Particle Image Velocimetry) or PTV (Particle Tracking Velocimetry) has given fairly good velocity profiles of two-phases. However, for sediment-laden flows, the applications of PIV or PTV has not been so successful, because the sediment particles introduced to the flow kept the images from being analyzed. A new algorithm, which consists of several image analysis methods, is proposed to analyze sediment-laden flows. For detection algorithm, threshold method, edge detection method, and thinning method are adapted, and for finding matching pair PIV and PTV routines are combined. The proposed method can (1) detect sediment particles with irregular boundaries, (2) remove reflected images and scattered images, and (3) discriminate tracer particles from reflected images of sediment particles.