• Title/Summary/Keyword: 공기 세정

Search Result 69, Processing Time 0.029 seconds

Optimum Operating Condition for Micro-Filtration Process as a Seawater Desalination Pretreatment (해수담수화 전처리로서 가압식 MF 공정의 최적 운전조건 도출)

  • Kim, Youngmin;Jang, Jung-Woo;Kim, Jin-Ho;Choi, June-Seok;Lee, Sangho;Kim, Sukwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.624-629
    • /
    • 2013
  • The relation between performance maintenance conditions and those cost efficiency was studied to choose an optimum operating condition in the seawater desalination pretreatment system. A hollow fiber microfiltration module, which was developed with domestic technology, was tested with the various operating conditions such as chemically enhanced backwash cycles and design dosages of a cleaning chemical. Transmembrane pressure was measured to investigate membrane fouling status and cleaning degree. In addition, economic analysis was performed to compare water production costs by the operation condition. As a result, The operation mode III, chemically enhanced backwash at once a day with 100 mg/L of sodium hypochlorite (NaOCl) was selected. The concurrent evaluation between membrane filtration performance and its economic analysis will be suitable to choose an efficient optimum condition.

Study on the Gelling Formation and Anti-gelling Properties of Liquid Detergent Based on Sodium Lauryl Ethoxy Sulfate (SLES) (소듐 라우릴 에톡시 설페이트(SLES) 베이스 액체세정제의 겔링성 및 겔링방지 특성에 대한 연구)

  • Chi, Gyeong-Yup
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.620-625
    • /
    • 2018
  • Liquid detergent based on sodium lauryl ethoxy sulfate (SLES) as main ingredient sometimes met gelling film on the surface when it is opened in the air. It was assumed because of the change of phase diagram of micelle by concentration change of surfactant, major ingredient of detergent when the water of detergent is evaporated. SLES showed strong hexagonal liquid crystal (LC) in 30~60 wt%, and lamellar LC over 60 wt%. In this research surface gelling formation of liquid detergent which is based on SLES as main ingredient was because of water evaporation. As water of detergent was evaporated, concentration of surfactant became higher. It was checked that surface gelling was LC of mixed surfactant system. Conclusionally we applied alpha olefin sulfonate (AOS) having good solubility, Sodium secondary alkane sulfonate (SAS) preventing hexagonal LC and hydrotrope sodium xylene sulfonate (SXS) and PEG1500 in order to prevent gelling film in SLES based liquid detergent. Like this, improved formula 4 and 5 can prevent the formation of gelling film on the surface of liquid detergent when it is opened in the air.

Understanding Alginate Fouling in Submerged Microfiltration Membrane System for Seawater Pretreatment (해수전처리를 위한 침지식 정밀여과 멤브레인 시스템에서 Alginate 파울링의 이해)

  • Jang, Hoseok;Kwon, Deaeun;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • Organic fouling observed in submerged membrane filtration as a pretreatment for seawater desalination increases energy consumption for membrane operation because of requiring frequent chemical cleaning and membrane replacement. In membrane pretreatment for seawater facing with algae blooms, membrane fouling was observed in submerged microfiltration using sodium alginate model compound which is one of the main components of extracellular polymeric substances. Without aeration, aglinate fouling increased with its concentration while aeration reduced the alginate fouling effectively regardless of its concentration tested. In the absence of aeration, alingate fouling tended to be decreased with increasing calcium concentration. However, this effectiveness was reduced by increasing sodium chloride concentration. At high concentration of sodium chloride and calcium similar to the seawater conditions, aeration reduced initial fouling. However, as time progressed, the effect of increased airflow rate on fouling reduction was not significant, implying that optimum airflow rate to control alginate fouling in submerged microfiltration can exist.

Characteristics of Heat Recovery Rate and Fouling according to Structures and Materials in Heat Exchangers (열교환장치의 구조 및 재질에 따른 열회수율과 파울링의 발생 특성)

  • Kim, Hyun-Sang;Kim, Yong-Gu;Bong, Choon-Keun;Lee, Myong-Hwa
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.3-12
    • /
    • 2015
  • We researched characteristics of heat recovery rate and fouling according to structures and materials in heat exchangers like water preheater and air preheater. Economizer and air preheater have used in thermal electric power plant. we made small incinerator and heat exchangers to carry out simulated experiment. We observed fouling formation and change of heat recovery rate, combusting powdered coal for 24 hr. In economizer, fin tube type had the largest amount of fouling formation, followed by tube line type > pipe type > auto washing type according to structures. As heat recovery rate, fin tube showed highest recovery rate, followed by auto washing type > pipe type > tube line type. In air preheater, fin tube type had the largest amount of fouling formation, followed by fin plate type > pipe type > pipe type coated by teflon > pipe type coated by ceramic according to structures. And then, heat recovery rate showed the same oder.

RF Magnetron Sputtering 방법으로 증착한 TiO2 / WO3 박막의 특성

  • Lee, Dong-Uk;Kim, Dong-Yeong;Seo, Seong-Bo;Son, Seon-Yeong;Yang, Jeong-Min;Kim, Hwa-Min;Lee, Jong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.190-190
    • /
    • 2011
  • 일반적으로 TiO2와 WO3는 광촉매 작용으로 인하여 살균력을 보이며, 친수성으로 인해 자가 세정 능력을 가져 유리 및 건축자재의 표면처리, 전자제품의 마감처리 용도로 많이 사용하고 있다. 현재 Sol-gel, CVD, Sputter, Spin-coating 방법 등으로 많은 연구가 진행되어 오고 있다. 이에 본 실험에서는 박막의 두께를 균일하게 만들 수 있는 RF-magnetron sputtering 방법을 이용하여 표면 경도와 부착력이 우수한 TiO2에 열적 특성과 화학적 특성이 안정한 WO3를 Double Layer 방식으로 증착하여 박막을 제작하였다. 광학적 특성을 알아 본 결과 가시광 영역에서 TiO2 / WO3 Double Layer 박막이 80% 이상의 높은 투과율을 나타내었으며, 박막의 표면을 확인 한 결과 TiO2 / WO3 Double Layer 박막이 더 조밀한 표면을 보였다. 또한 접촉각을 측정을 통하여 TiO2박막보다 TiO2 / WO3 double layer박막이 낮은 접촉각을 나타내었다. 이는 TiO2 표면은 소수성이나 WO3로 인해 광촉매 기능이 향상되어 공기 중의 물 분자가 해리 흡착되면서 친수성이 향상되는 것으로 사료된다. 이러한 박막은 건물의 외벽이나 자동차의 내 외장재 전자기기용 광학 필름에 자가세정, 내반사 코팅소재로 활용 가치가 높을 것으로 예상된다.

  • PDF

Development of the Quick Exhaust Valve to Blowing the Intake Filter for the Thermal Power Plant (화력발전소 흡입필터 세정용 급속 배기 밸브의 개발)

  • Jeong, C.S.;Lee, H.U.;Jeong, Y.M.;Lee, C.D.;Yang, S.Y.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.548-552
    • /
    • 2010
  • The air suction filter of the power plant decrease the dust and impurities of suction air that reduce the life and efficiency of the boiler. The suction efficiency of the air filter falls with the dust and impurities when the time of use comes to be long. Therefore, the various contaminant of the filter must remove periodically. This paper presents a developed quick exhaust valve to use in the thermo-electric power plant. to removing contaminants on the filter, the blowing is done shortly by air pressure. The Air flowed out to the out side from the inside of the filter. The performance test of the developed valve is done by making a test-bench according to JIS and KS standards. The efficiency is found higher than the existing related valve.

A study on the Development and Evaluation of Sludge Occlusion Reduced Diffuser (폐색 저감형 산기관의 개발 및 적용성 평가)

  • Kim, Young-Hoon;Kim, Kwan-Yeop;Lee, Eui-Jong;Nam, Jong-Woo;Lee, Chang-Ha;Jeon, Min-Jung;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • The diffuser which is conventionally adapted to MBR, has problem that decreasing the cleaning effect of membrane module by inflexible air supply due to the occlusion of sludge from diffuser hole. To solve this problem, diffuser structure of submerged module should be improved to discharge sludge which is flow into the diffuser for prevent occlusion in the diffuser. In this study, the structure of the diffuser was reformed to open lower part for preclusion the blocking. And the outlet diameter of the diffuser was drawn through the condition for the depth of water and air rate, to prevent air-leak condition of improved diffuser. Moreover, application is evaluated by comparing test with occlusion effect of the conventional and improved diffuser. From the results, air-water boundary changes are steady with changes of water depth and it shows linear relation about air rate. By using this linear numerical formula, the height of diffuser's outlet can be decided. Also, it displays that it can prevent the occlusion effect during the comparing test. Hereafter, if this diffuser is applied to practical MBR process, the occlusion problem of diffuser will be disappeared.

Control of Membrane Fouling in Submerged Membrane Bioreactor(MBR) using Air Scouring (침지형 생물 반응기 공정에서 플럭스 향상을 위한 공기 세척 효과에 관한 연구)

  • Shin, Dong-Hwan;Baek, Byung-Do;Chang, In-Soung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.948-954
    • /
    • 2008
  • Membrane bioreactor(MBR) processes have been widely applied to wastewater treatment for last decades due to its excellent capability of solid-liquid separation. However, membrane fouling was considered as a limiting factor in wide application of the MBR process. Excess aeration into membrane surface is a common way to control membrane fouling in most MBR. However, the excessively supplied air is easily dissipated in the reactor, which results in consuming energy and thus, it should be modified for effective control of membrane fouling. In this study, cylindrical tube was introduced to MBR in order to use the supplied air effectively. Membrane fibers were immersed into the cylindrical tube. This makes the supplied air non-dissipated in the reactor so that membrane fouling could be controlled economically. Two different air supplying method was employed and compared each other; nozzle and porous diffuser which were located just beneath the membrane module. Transmembrane pressure(TMP) was monitored as a function of airflow rate, flux, and ratio of the tube area and cross-sectioned area of membrane fibers(A$_m$/A$_t$). Flow rate of air and liquid was regulated to obtain slug flow in the cylindrical tube. With the same flow of air supply, nozzle was more effective for controlling membrane fouling than porous diffuser. Accumulation of sludge was observed in the tube with the nozzle, if the air was not suppled sufficiently. Reduction of membrane fouling was dependent upon the ratio, A$_m$/A$_t$. For diffuser, membrane fouling was minimized when A$_m$/A$_t$ was 0.27, but 0.55 for nozzle.