• Title/Summary/Keyword: 공기흡입식 엔진

Search Result 30, Processing Time 0.024 seconds

Study on the Buzz Characteristics of Supersonic Air Intake at Mach 2.5 (마하 2.5 초음속 공기흡입구의 버즈 특성에 관한 연구)

  • Lee, Hyoung-Jin;Park, Tae-Hyoung;Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.426-437
    • /
    • 2007
  • off-design conditions, supersonic air inlets often encounter the problem of aerodynamic instability, called inlet buzz, which causes the significant degradation of the engine performance. An experimental and numerical study was conducted to investigate the phenomenon of supersonic inlet buzz on a generic, axisymmetric, external-compression inlet with a single-surface center-body. It is understood the mechanism of buzz onset as proving that the origin of buzz is the flow choking induced by separation at the intake throat. Also it is observed the intermittent and continuous buzz mode as area ratio varies and understood the transition process through this study. The buzz frequency become to be higher as decreasing the area ratio, but for each area ratio, the frequency of pressure oscillation is the same at all points of intake.

Buzz Suppression of Supersonic Air Inlet by Cowl Position Modification (카울 위치변화에 의한 초음속 공기흡입구의 버즈억제)

  • Shin, Phil-Kwon;Park, Jong-Ho;Lee, Yong-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.10-17
    • /
    • 2005
  • An experimental study was conducted at a Mach number of 2.0 to investigate the buzz suppression method on an axisymmetric, external compression supersonic inlet. The inlet model has a fixed geometry with no internal contraction. The inlet configuration was altered by changing the cowling. Results show that source of buzz has been related to the existence in the flow field of velocity discontinuity across a vortex sheet which originates from a shock intersection point. With external compression inlet, buzz can be suppressed by positioning the oblique shock slightly inside or outside of the cowl.

Design Method and Preliminary Data Analysis of Subscale Direct-Connect Test Facility for Liquid Ramjet Combustor (I) (액체 램제트 엔진용 소형 연소기 직접 연결식 시험장치의 설계 방법과 시험 데이터 분석 (I))

  • 성홍계;김인식;이규준;김경무;이도형;변종렬;황용석;오석진;한정식
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.59-63
    • /
    • 2003
  • This paper describes the conceptual design method of subscale direct-connect test facility for liquid fuel ramjet combustion study and preliminary analysis of test results. The measured pressure signal represents the successful operation of the test facility. The pressure oscillation in combustion chamber shows the dominant frequency of 190Hz, relatively very low frequency to 1L acoustic mode (1200Hz) based on the length of combustor. It is suspected that there were several driving sources, which are vortex street at backward step of combustor, inlet resonance induced by the long length of unchecked inlet, and/or combustor configuration with optical window.

  • PDF

Conceptual study of the Vitiated Air Heater for Scramjet test (스크램젯용 공기 가열기 개념연구)

  • Lee, Jung-Min;Kang, Kyung-Taik;Lim, Jin-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.349-352
    • /
    • 2010
  • This is conceptual study of vitiated air heater(VAH), the necessary ground test facility, for characteristics studies of scramjet combustion and development of scramjet engines. The VAH is one of various types which provided hot air to an intake or a combustion chamber of scramjet and it must use suitable fuel to get hot combustion gas and more similar mixture gas(vitiated air) to real air. In the study, foreign VAHs being capable of providing very high temperature were researched, and injectors for VAH using LNG(CH4) or hydrogen were designed conceptually to develop scramjet vehicle.

  • PDF

The Characteristics of Combustion and Exhaust Emission according to Operating Condition and Fuel Composition in a Direct Injection Type HCCI Diesel Engine (직분식 예혼합 압축착화 디젤엔진의 운전조건과 연료조성에 따른 연소 및 배기 특성)

  • 이기형;류재덕;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • The Homogeneous Charge Compression Ignition (HCCI) engine has advantage for reducing the NOx and P.M. simultaneously. Therefore, HCCI engine is receiving attention as a low emission diesel engine concept. This study was carried out to investigate the characteristics of combustion and exhaust emission for operating conditions in a direct injection type of HCCI engines such as supercharged and naturally aspirated using diesel fuel and additive. From the experimental result, we found that cool flame was always appeared and also it was difficult to control combustion characteristics by changing the injection timing in HCCI. In addition, at the lean air-fuel ratio and high speed range, it was observed that charging air pressure, additive or increasing intake air temperature is effective to increase combustion performance and reduce exhaust emission. We concluded that chemical reaction by the increasing intake air temperature or additive without physical improvement has limitation for reduction of exhaust emission.

Mixing Characteristics of Various Cavity Shapes in SCRamjet Engine (스크램제트 엔진 내부 Cavity 형상 변화에 따른 혼합 성능 특성)

  • Oh, Ju-Young;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.57-63
    • /
    • 2008
  • In combustor of SCRamjet of air-breathing engine type, the flow duration time is very short because of the supersonic air flow. In this short duration, the whole process of combustion should be done, so it is very important to study supersonic combustion technologies. In this study, we focus fuel-air mixing enhancement method using cavity and conducted 3-dimensional Navier-Stokes computational analysis. Cavity height is fixed by 10mm, length is changed from 0 to 40mm. There is a supersonic jet injection downstream of the cavity and the hole size is 1mm. As a result, the higher ratio of cavity length/height is, the higher value of vorticity gets. The increased area of vorticity expands to upper and sidewise combustor. However, the stagnation pressure loss which generates thrust loss becomes higher when the vorticity is higher. Considering these result, we can conclude that optimized design which considers the highest mixing performance and the least stagnation pressure loss is needed.

Measurement of Laminar Burning Velocity of Endothermic Fuel Surrogates (흡열분해 모사연료의 층류화염 전파속도 측정)

  • Jin, Yu-In;Lee, Hyung Ju;Han, Jeongsik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.67-75
    • /
    • 2019
  • The laminar burning velocity of endothermic fuel surrogates is measured in this study, in order to investigate combustion characteristics of aviation fuel after being used as coolant in an active cooling system of a hypersonic flight vehicle. A Bunsen burner was manufactured such that the laminar burning velocity can be taken for two types of surrogate fuels, SF-1 and 2. The results showed that the burning velocity of surrogate fuels was faster at high equivalence ratio conditions than that of the reference fuel (RF), and specifically, the velocity of SF-1 had the maximum value at the highest equivalence ratio compared with those of SF-2 and RF.

Reduction of combustion instability using flame holder integrated injector (통합형 연료분사장치를 통한 연소불안정 저감)

  • Hwang, Yong-Seok;Lee, Jong-Guen;Park, Ik-Soo;Choi, Ho-Jin;Jin, Yu-In;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.432-437
    • /
    • 2010
  • A new device injecting secondary fuel behind flameholder was invented and tested in order to reduce low frequency combustion instability of combustor using V-gutter flameholder. Specially designed combustion device could make large combustion instability up to 180 dB successfully, and newly invented device made a success to reduce 110~120Hz low frequency pressure pulsation up to 84%. It was found that the fuel flow rate of secondary fuel supplying behind flameholder was the only parameter which dominates reduction of instability. It is considered that stabilized flame with sufficient secondary fuel can lead to break the connection between combustion system and acoustic system due to independence of flame from fluctuation of main fuel resulted from synchronization with acoustic wave.

  • PDF

Study on Velocity and Altitude Keeping Method of a UAV Around Service Ceiling Altitude (실용상승한도 고도 부근에서 무인기의 속도 및 고도유지 제어에 관한 연구)

  • Hong, Jin-sung;Won, Dae-yeon;Jang, Se-ah
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.383-388
    • /
    • 2021
  • Air-breathing engines used in aircraft have a performance limit as the altitude increases, and this determines the service and absolute ceiling altitude. The method of maintaining altitude and speed in a fixed-wing aircraft in level flight using classical control method is generally using thrust for speed increase/deceleration and pitch attitude for altitude increase/decrease. If this method is used near the service ceiling altitude, increasing the pitch to reduce the altitude error results in a speed reduction. Therefore, it is necessary to use a control method that maintains the speed first using the pitch attitude. Especially in the case of unmanned aerial vehicles, these two methods should be automatically available at the right time. In this paper, we propose a method of switching the speed and altitude maintenance algorithm near service ceiling altitude.

Evaluation of EGR applicability for NOx reduction in lean-burn LPG direct injection engine (초희박 LPG 직접분사식 엔진에서 질소산화물 저감을 위한 배기재순환 적용성 평가)

  • Park, Cheolwoong;Cho, Seehyeon;Kim, Taeyoung;Cho, Gyubaek;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.22-28
    • /
    • 2015
  • In order to keep the competitiveness of LPG fuel for transportation fuel, the difference in fuel consumption with gasoline and cost for an aftertreatment system should be reduced with continuous development of technology for LPG engine. In the present study, spray-guided type direct injection combustion system, whose configuration is composed of direct injector in the vicinity of spark plug, was employed to realize stable lean combustion. A certain level of nitrogen oxides($NO_x$) emits due to a locally rich mixture regions in the stratified mixture. With the application of EGR system for the reduction of $NO_x$, 15% of $NO_x$ reduction was achieved whereas fuel consumption and hydrocarbon emission increased. By the application of EGR, the combustion speed reduced especially appeared at initial flame development period and peak heat release rates and increasing rates for heat release rate decreased as EGR rate increased due to the dilution effect of intake air.