• Title/Summary/Keyword: 공기포일 베어링

Search Result 52, Processing Time 0.01 seconds

Application of Foil Air Bearing to Small Gas Turbine Engine for UAV (무인기용 소형 가스터빈 엔진에 대한 포일 공기 베어링 적용 연구)

  • Kim, Kyeong-Su;Lee, Si-Woo;Kim, Seung-Woo;Lee, In
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.261-266
    • /
    • 2003
  • Foil air bearing, which is a noncontact bearing utilizing viscosity of operating fluid and elastic deformation of foil structure, has several advantages over rolling element bearings in terms of oilless environment, long life, high speed operation, and high temperature application over $500^{\circ}C$ . Recently advanced researches are actively being performed for the application to the extreme temperature such as gas turbines, as well as conventional small turbo machinery. In this paper, the principle of foil air bearing is introduced and a feasibility study to adopt a foil bearing as the turbine bearing of 65 HP turbo shaft engine, which is under development for UAV, is presented.

  • PDF

Dynamic Characteristics and Experimental Study on the Foil Bearings for High Speed Turbo Machineries (고속 터어보기계용 공기포일베어링에 대한 동특성과 실험적 연구)

  • Hwang, Pyung;Kwon, Sung-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.159-166
    • /
    • 1998
  • 본 연구에서는 공기포일 베어링으로 지지된 로터 베어링 시스템을 구성하고 실험을 수행함으로써 시스템의 진동을 측정하고 그 결과를 해석함으로써 로터 베어링 시스템의 안정성 검토한다. 또, 초기 구동 마찰을 고려하여 공기윤활로만 구동되는 경우와 초기에 베어링 표면에 오일이 도포된 경우를 비교한다. Transient data를 해석 함으로써 로터 베어링 시스템의 startup 및 shutdown에 대한 특성 파악이 가능해지며 시스템의 동적 특성에 대한 더욱 정확한 해석을 가능케한다.

  • PDF

High-Efficiency TurboBlowers using High-Speed BLDC Motors and Foil Air Bearings (BLDC 전동기와 공기포일베어링을 이용한 고효율 터보블로워)

  • Oh, Jong-Sik;Lee, Heon-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.309-314
    • /
    • 2003
  • High-efficiency turboblowers in the next generation have been successfully developed and commercialized first in the world, using the high-speed BLDC motors and the foil air bearings. About 20-35% savings in electricity consumption in the field are found in comparison with the conventional roots rotary blowers and the integral gear-driven turboblowers. Current TB75 and TB150 products are replacing the existing blowers in the worldwide market.

  • PDF

Bending Mode Vibration Control of a Flexible Shaft Supported by a Hybrid Air-foil Magnetic Bearing (공기포일 및 자기 하이브리드 베어링으로 지지되는 연성축의 휨 모드 진동 제어)

  • Jeong, Se-Na;Ahn, Hyung-Joon;Kim, Seung-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.791-791
    • /
    • 2009
  • Hybrid air-foil magnetic bearing combines two oil free bearing technologies to take advantage of the strengths of each bearing with minimizing each other weaknesses. This paper presents bending mode vibration control of a flexible shaft supported by the hybrid air-foil magnetic bearing. An experiment set-up of a flexible shaft supported by the hybrid air-foil magnetic bearing is built. In order to verify the effectiveness of the hybrid bearing, unbalance responses of the flexible shaft supported by three different bearings: air-foil, magnetic and hybrid bearings are compared. Effect of load sharing between air-foil and magnetic bearings are investigated through changing control gain and offset displacements of magnetic bearing.

  • PDF

A study of the Load Capacity of Air Foil Thrust Bearings (공기 포일 스러스트 베어링의 하중지지능력에 관한 연구)

  • Lee, Yong-Bok;Kim, Tae-Young;Park, Dong-Jin
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.292-297
    • /
    • 2009
  • Air foil thrust bearings are the critical components available on high-efficiency turbomachinery which need an ability to endure the large axial force. Air foil bearings are self-acting hydrodynamic bearings that use ambient air as their lubricant. Since the air is squeezed by the edge of compliance-surface of bearing, hydrodynamic force is generated. In this study, we measured the air film thickness and obtained the minimum film thickness experimentally. To increase the maximum load capacity, compliance of sub-structure was controlled. From numerical analyses, it is seen that, if the air film thickness is distributed more uniformly by variable compliance, the thrust bearings can take more axial load.

The Limiting Load Capacity of Air Foil Thrust Bearings (공기 포일 스러스트 베어링의 한계 지지하중 해석)

  • Jung, Si-Young
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.279-284
    • /
    • 2009
  • The limiting load capacity of air foil thrust bearings at extremely high operating speeds is theoretically investigated. The limiting load capacity of a sector is shown to increase as the angular extent ${\beta}$ and the inlet film thickness $h_1$ of the bearing increase, while it decreases with an increase in the ramp ratio b and the compliance ${\alpha}$ of the bearing. But it is found that the angular extent of the bearing is not related to the total limiting load capacity of the $360^{\circ}$ thrust bearing.

Measurement of Dynamic Coefficients of Air Foil Bearing for High Speed Rotor by Using Impact Test (임팩트 테스트를 이용한 초고속 회전체용 공기 포일 베어링의 동특성 계수 측정)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.5-10
    • /
    • 2011
  • MTG(Micro turbine generator) operating at 400,000 rpm is under development and the impact test rig to measure the dynamic stiffness and damping coefficient of air foil bearing for high speed rotor is presented in this study. The stiffness and damping coefficient of air foil bearing depending on the rotational speed can be measured easily and effectively by using the simple configuration of impact test rig which is composed of air gun, gap sensors and high speed motor. The estimation results of stiffness and dampling coefficient using least square estimation method is presented as well.

Rotordynamci Effects Due to Aerodynamic Instability in a Turbo-compressor with Air Foil Bearings (공기 포일 베어링으로 지지되는 터보 압축기의 공력 불안정성이 로터에 미치는 진동 영향)

  • Kim, Tae-Ho;Lee, Yong-Bok;Kim, Chang-Ho;Kim, Kwang-Ho;Lee, Nam-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.191-198
    • /
    • 2002
  • Oil-free turbo-compressor supported by compliant foil bearings which remove oil-contamination by elimination of the conventional ball bearing and oil lubrication systems is presented. Turbo-compressor makes two individual air compression with two impellers at operating speed, 39,000rpm. In this study, the rotordynamic effects caused by aerodynamic instability were investigated with variable mass flow rate. Correlation between frequencies of pressure fluctuation in two diffusers and those of excitation forces on rotor were clearly developed in aerodynamic unsteady region. Thus, these results show that it is beneficial to design high speed rotating turbomachinery considering coupling effect between aerodynamic instability and rotordynamic force.

  • PDF

Rotordynamic Effects Due to Aerodynamic Instability in a Turbo-compressor with Air Foil Bearings (공기 포일 베어링으로 지지되는 터보 압축기의 공력 불안정성이 로터에 미치는 진동 영향)

  • Kim, Tae-Ho;Lee, Yong-Bok;Kim, Chang-Ho;Lee, Nam-Soo;Kim, Kwang-Ho;Shin, You-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.62-69
    • /
    • 2003
  • An oil-free turbo-compressor supported by compliant foil bearings which remove oil-contamination by elimination of a conventional ball bearing and oil lubrication systems is presented. Turbo-compressor makes two individual air compressions with two impellers at a operating speed of 39,000 rpm. In this study, the rotordynamic effects caused by aerodynamic instability were investigated with variable mass flow rates. Correlations between frequencies of pressure fluctuation in two diffusers and those of excitation forces on rotor were clearly observed in an aerodynamic unsteady region. Thus, these results show that it is beneficial to design high-speed rotating turbomachinery by considering coupling effect between aerodynamic instability and rotordynamic force.