• Title/Summary/Keyword: 공기유인

Search Result 42, Processing Time 0.025 seconds

Comparison of ImmDbilization Techniques Using Phanerochaete chrysosporium for the Treatment of Pulp Waste Effluent (생물학적 펄프 파수처리를 위한 Phanerochaete chrnosporium의 고정화 방법 비교)

  • 유인상
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.351-357
    • /
    • 1993
  • Three immobilization techniques and free cell system were tested to determine the most effective technique for the treatment of pulp waste effluent. The tests were conducted using Phanerochaete chrysosporium as a biocatalyst in a process designed to treat pulp waste effluent. The results show that Ca-alginate gel was the best immobilization material. The chosen material improved the stability and increased the removal efficiency of the system. The experiment using the chosen material was mom- bored for 400 hours with no significant changes in the state of the fungus. Common problems with other immobilization materials and free cell system were oxygen transfer resistance caused by air channelling and clogging in the bioreactor.

  • PDF

Measurement of Laminar Burning Velocity of Endothermic Fuel Surrogates (흡열분해 모사연료의 층류화염 전파속도 측정)

  • Jin, Yu-In;Lee, Hyung Ju;Han, Jeongsik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.67-75
    • /
    • 2019
  • The laminar burning velocity of endothermic fuel surrogates is measured in this study, in order to investigate combustion characteristics of aviation fuel after being used as coolant in an active cooling system of a hypersonic flight vehicle. A Bunsen burner was manufactured such that the laminar burning velocity can be taken for two types of surrogate fuels, SF-1 and 2. The results showed that the burning velocity of surrogate fuels was faster at high equivalence ratio conditions than that of the reference fuel (RF), and specifically, the velocity of SF-1 had the maximum value at the highest equivalence ratio compared with those of SF-2 and RF.

Effects of Circulation Fans on Uniformity of Meteorological Factors in Warm Air Heated Greenhouse (순환팬이 온풍난방 온실의 기상분포 균일화에 미치는 영향)

  • Yu, In-Ho;Cho, Myeong-Whan;Lee, Si-Young;Chun, Hee;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.291-296
    • /
    • 2007
  • This study was conducted to investigate the effects of horizontal air flow produced by circulation fans on horizontal and vertical profiles of meteorological factors. The three-dimensional distributions of air speed, air temperature, relative humidity and carbon dioxide $(CO_2)$ concentration were measured with and without the fans in operation. The uniformity of the spatial distribution of meteorological factors decreased as the outside air temperature decreased. In "fans off" condition, spatial variations of $4.7^{\circ}C$ in air temperature, 19% in relative humidity were detected. When the fans were operated, these variations were reduced to 2.2 and 6.3%, respectively. As the fan capacity increased, the difference in air temperature among sampling points decreased. The fan capacity of $0.0104m^3{\cdot}s^{-1}{\cdot}m^{-2}$ was enough to obtain a reasonable air flow in greenhouse. The vertical profiles of air temperature and $CO_2$ concentration were reasonably uniform regardless of measurement height and fan capacity. Further researches on the position of fans to reduce the difference in air temperature along the width and the effects of using a larger number of smaller fans are required.

Application of Ventilation Corridor to Mitigate Particulate Matter for the Sejong-Si (미세먼지 저감대책으로서 바람길 적용 방안 : 세종시를 대상으로)

  • Nam, Seongwoo;Sung, Sunyong;Park, Jong-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2020
  • The purpose of this study is to verify the effects of ventilation corridor and derive adequate policy alternatives to its application for the city of Sejong, which is located in an inland of Korean Peninsula. In order to introduce the ventilation corridor in the city, it is necessary both to understand change on fresh air flow affected by the construction of new cities and to show its effects which are able to circulate air flow of the city. The study identified ventilation effects using computational fluid dynamics models. In particular, it analyzed change on wind speed and direction after constructing of a new town and cool air flow along the lowlands generated after sunset. In addition, it identified those of reducing particulate matter when arranging buildings conforming to the ventilation corridor at block level. The policy implications derived from simulation can be summarized as follows. First, it is desirable to plan ventilation corridors so that fresh air from mountains, forests, and valleys can flow into cities and mitigate the concentration of particulate matter. Furthermore, public facilities covering parks, plazas, and playgrounds should be installed preferentially to attract safe outdoor activities near to areas with low levels of particulate matter. Finally, it is adequate to prepare for a number of alternative plans by analyzing ventilation corridors when setting out district unit plan.

Study on Heavy Metal Contents in Air of Den Tal Laboratories and Urine of Dental Laboratory Technicians in CHONBUK Area (전북지방 치과기공실 공기중 및 치과기공사의 뇨중중금속 함량에 관한 연구)

  • 이정오;이종섭;유인수
    • Journal of Environmental Health Sciences
    • /
    • v.16 no.2
    • /
    • pp.97-103
    • /
    • 1990
  • For this study, I used the urine of 100 dental laboratroy technicians and 24 students in Chonbuk region. The purposes of this study were to investigate concentrations of cadmium (Cd), nickel (Ni) and chromium (Cr) in the air of dental laboratories. The results were as follows: 1. The concentrations of Cd is 0.0115mg/m$^{3}$ in the porcelain part, 0.0090mg/m$^{3}$ in the polishing part, that of Ni is 0.2864mg/m$^{3}$ in the porcelain part, 0.3188mg/m$^{3}$ in the polishing part, that of Cr is 0.0448mg/m$^{3}$ in the porcelain part, 0.1032mg/m$^{3}$ in the polishing part. 2. The concentrations of Cd, Ni and Cr in the technicians urine are 3.06 $\mu$g/l, 44.55 $\mu$g/l and 14.58 $\mu$g/l. Those of students, urine as the control group are 1.93 $\mu$g/l, 19.05 $\mu$g/l and 7.48 $\mu$g/l. There is significant difference between experimental group and control group (P < 0.01). 3. Watching for age and working place, 31-40 years age group reveals the highest group in the concentrations of Cd. Over 41 year age group represents the highest group in the concentrations of Ni and Cr (P < 0.01) The concentration of Cd turns up the highest in the partial part and that of Ni and Cr appears the highest in the polishing part (P < 0.01). Looking into working age, over 7 year group is the highest group in the concentrations of all investigated (P < 0.05).

  • PDF

An experimental study on swirling spray flame structure by air-blast nozzle (기류분사 노즐에 의한 선회 분무 화염의 구조에 관한 실험적 연구)

  • O, Sang-Heon;Baek, Min-Su;Kim, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.473-485
    • /
    • 1997
  • Detailed experimental study has been made of air blast kerosene spray flames with and without swirl in combustion air flow. Phase-Doppler detect technique is used to measure Sauter mean diameter, axial component mean and rms velocity, size-velocity correlation, and number density. These measurements are obtained for both nonreacting and reacting cases under several stable flame conditions. The results show that the introduction of swirl to the combustion air modifies the spatial distribution of droplet size, velocity, and number density, and thus alters the flame structure. However, due to the weak swirl intensity, the overall structure of swirling flames are essentially same as that of nonswirling flames. Physical model of structure of air blast atomized spray flames is projected to show that spray flames are composed of three distinct regions: the two-phase mixture region, the main reaction and the intermittent combustion region. Near the atomizer, two phase mixture of droplet and air is formed in the core region. This dense spray region is characterized by high droplet number density and the strong convective effect. There follows the main combustion region where the main flame penetrates within the spray boundary. Main reaction region of these flames are governed by internal group combustion mode. Finally there exists the intermittent combustion region where local group burning or isolated droplet burning occurs.

Reduction of combustion instability using flame holder integrated injector (통합형 연료분사장치를 통한 연소불안정 저감)

  • Hwang, Yong-Seok;Lee, Jong-Guen;Park, Ik-Soo;Choi, Ho-Jin;Jin, Yu-In;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.432-437
    • /
    • 2010
  • A new device injecting secondary fuel behind flameholder was invented and tested in order to reduce low frequency combustion instability of combustor using V-gutter flameholder. Specially designed combustion device could make large combustion instability up to 180 dB successfully, and newly invented device made a success to reduce 110~120Hz low frequency pressure pulsation up to 84%. It was found that the fuel flow rate of secondary fuel supplying behind flameholder was the only parameter which dominates reduction of instability. It is considered that stabilized flame with sufficient secondary fuel can lead to break the connection between combustion system and acoustic system due to independence of flame from fluctuation of main fuel resulted from synchronization with acoustic wave.

  • PDF

Development of Multi-span Plastic Greenhouse for Tomato Cultivation (토마토 재배용 연동 플라스틱 온실 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.428-436
    • /
    • 2012
  • This study aimed to develop the multi-span plastic greenhouse which is suitable for tomato cultivation and is safe against climatic disasters such as typhoon or heavy snow. The width and heights of eaves and ridge of newly developed tomato greenhouse are 7, 4.5 and 6.5 m, respectively. The width is the same but the eaves and ridge heights are 1.8 and 2 m higher than conventional 1-2 W greenhouses, respectively. Cross beam has been designed as a truss structure so it can sustain loads of tomato and equipment. Tomato greenhouse has been designed according to climatic disaster preventing design standard maintaining the high height. In other words, the material dimensions and interval of materials including column and rafter have been set to stand against $40m{\cdot}s^{-1}$ of wind and 40 cm of snow. Tomato greenhouse has been equipped with rack-pinion type roof vents which have been used in glass greenhouse in order to prevent excessive rise in air temperature. This vent type is different from that of 1-2 W type greenhouse which is made by rolling up and down the vinyl at upper part of column. Roof vents are installed at ridge, and thus external air inflow and natural ventilation are maximized. As the height increases, heating cost increase as well and, therefore, tomato greenhouse has been equipped with multi-layered thermal curtain, of which thermo-keeping is excellent, to prevent heat from escaping.

Effects of an Improved Side Vent on Yield of Oriental Melon and Temperature in Single-span Plastic Greenhouse with Roof Ventilation Fans (지붕 환기팬이 설치된 단동 플라스틱 온실에서 개선된 측창형태가 하우스 내 온도 및 참외 수량에 미치는 영향)

  • Yu, In Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Shin, Young An
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.283-290
    • /
    • 2017
  • In this study, the method to attach plastic film on the side vent from inside of greenhouse for the entire length was developed as the way to make crops less stressful while uniformly getting outside air into the greenhouse when ventilating using roof ventilation fans at single-span plastic greenhouse for oriental melon in a low-temperature period. The plastic film was installed from ground to 10cm below from the height where side vent is fully opened. In order to verify that the improved side vent can improve greenhouse environment and fruit yield, it was compared with the control plot of conventional side vent. Both greenhouses were not ventilated until February 25th, 2017. Air temperature in both greenhouses exceeded $40^{\circ}C$ in mid February. Therefore, it is judged that the greenhouse should be ventilated from mid February. Air temperature in the control plot exceeded $30^{\circ}C$ from late April. Therefore, it is judged that the plastic film attached to the inside of side vent should be removed in late April, or in early May at the latest. Soil temperature in the treatment plot in the mid Aril exceeded $20^{\circ}C$, which is suitable for growth, while that in the control plot was still below $20^{\circ}C$. Soil temperature in the control plot finally exceeded $20^{\circ}C$ in late April. The consumption of electricity was 47.2 kWh in the treatment plot, and 48.3 kWh in the control plot, which was no significant difference. The marketable yield of oriental melon in the treatment plot was 5,094kg, which was 23.9% more than that in the control plot, 4,113kg. The marketable fruit ratio was 73.5% in the treatment plot, and that in the control plot was 73.9%, which was no significant difference.

Actual State of Structures and Environmental Control Facilities for Tomato Greenhouses in Chungnam Region (충남지역 토마토 재배온실의 구조와 환경조절설비 실태분석)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.1
    • /
    • pp.73-85
    • /
    • 2009
  • An investigation was conducted to get the basic data for establishing structural safety and environmental management of tomato greenhouses in Chungnam region. The contents of the investigation consisted of actual state of greenhouse structures and environmental control facilities. Most of greenhouses were arch type single-span plastic houses and they had too low height for growing tomatoes. Frameworks of multi-span greenhouses were suitable, but those of single-span were mostly insufficient. Every greenhouse had thermal curtain movable or covering fixed inside the greenhouse for energy saving, and heating facilities were mostly warm air heater. Irrigation facilities were mostly drip tube and controlled by manual operation or timer. Almost all of the greenhouses didn't install high level of environmental control facilities such as ventilator, air circulation fan, $CO_2$ fertilizer, insect screen, supplemental light, and cooling device.

  • PDF