• Title/Summary/Keyword: 공기냉각

Search Result 425, Processing Time 0.023 seconds

HELIUM CONCENTRATION DECREASE DUE TO AIR ENTRAINMENT INTO GLASS FIBER COOLING UNIT IN A HIGH SPEED OPTICAL FIBER DRAWING PROCESS (광섬유 고속인출공정용 유리섬유 냉각장치 내 공기유입에 의한 내부헬륨농도 저하현상 연구)

  • Kim, K.;Kim, D.;Kwak, H.S.;Park, S.H.;Song, S.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.92-98
    • /
    • 2010
  • In a modern high speed drawing process of optical fibers, it is necessary to use helium as a cooling gas in a glass fiber cooling unit in order to sufficiently cool down the fast moving glass fiber freshly drawn from the heated silica preform in the furnace. Since the air is entrained unavoidably when the glass fiber passes through the cooling unit, the helium is needed to be injected constantly into the cooling unit. The present numerical study investigates and analyzes the air entrainment using an axisymmetric geometry of glass fiber cooling unit. The effects of helium injection rate and direction on the air entrainment rate are discussed in terms of helium purity of cooling gas inside the cooling unit. For a given rate of helium injection, it is found that there exists a certain drawing speed that results in sudden increase in the air entrainment rate, which leads to the decreasing helium purity and therefore the cooling performance of the glass fiber cooling unit. Also, the helium injection in aiding direction is found to be more advantageous than the injection in opposing direction.

Noise Control for Diesel Engine Generator Sets (디젤 엔진 발전기 세트의 소음제어)

  • 남경훈;주현돈;최부군;박실룡
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.165-170
    • /
    • 1995
  • 소음저감 설계기술은 제품의 경쟁력 향상을 위해 일반인이 쉽게 접근할 수 잇는 가전제품, 자동차, 항공기 분야 등에서 많은 연구가 수행되어 왔으며, 최근 소음환경 규제가 강화되고 대형기계의 설치 위치가 주거지역과 가까워지므로 산업용 기계설비의 소음제어에 대한 관심이 점차 증대되고 있다. 특히 디젤 엔진 발전기 세트를 이용해서 전원을 공급하는 산업용 기계에 있어서는 디젤 엔진과 발전기가 주소음원이며, 크게 기계적 소음, 공기 역학적 소음, 그리고 전자기 소음 등으로 분류된다. 본 연구는 이러한 소음을 발생시키는 엔진(Engine), 발전기(Generator), 방열팬(Radiator Fan) 등의 성능을 개선시켜 소음을 감소시키는 것이 아니라, 외부 덮개(Canopy)에 흡음재를 부착하여 소음저감 방법을 채택했다. 연구대상으로서는 항만에서 컨테이너(Container)를 운송하는 이동용 크레인(Transfer Crane)의 엔진 발전기 세트(set)로서, 각 구성품(엔진, 발전기, 방열 팬)의 음향 덮개의 내부구조를 설계하였다. 그리고 덮개 내부 온도를 일정하게 유지시키기 위하여 엔진에서 방사하는 방열공기와 내부로 흡입되는 냉각공기의 열유동장 해석도 병행하였다.

  • PDF

Occupant's Thermal Comfort and Heat Gains in CR by PEM (개별공조에 의한 CR에서의 Heat Gain과 재실자 온열성 연구)

  • 김원태
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.13-18
    • /
    • 1999
  • 기존의 공조방식 및 본 연구에서 제안한 개별환경제어시스템(PEM)으로부터 열유체 유동 헤석용 PHOENICS 프로그램을 이용하여 3차원 시뮬레이션을 수행하여 재실자가 거주하고 있는 CR(컴퓨터실)에서의 Heat Gain과 재실자 온열성 특성을 감성공학적 측면에서 분석하였다. 본 연구로부터 바닥으로부터 공기를 유입하여 천정으로 유출하는 바닥취출공조방식이 실내 환경 개선에 유리하고 diffuser만을 통하여 공기가 유입되어 천정과 바닥으로 공기가 유출되는 PEM 방식은 열적 냉각 성능은 좋으나 PC와 재실자 주변에 강력한 재순환 유동이 발생되어 실내 환경의 쾌적성 측면에서는 불리하나 PEM과 TAM방식의 결합이 감성공학적 온열특성 분포로부터 CR실의 재실자 주변 온도 분포에 최적임을 알 수 있다.

  • PDF

Enhancement of combustion efficiency of a air-cooled combustor system with single F.D. Fan Using CFD (전산유체역학을 이용한 단일 송풍기가 적용된 공냉식 연소설비의 효율개선)

  • Kim, Min-Choul;Shon, Byung-Hyun;Lee, Jae-Jeong;Park, Hung-Suck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.460-468
    • /
    • 2021
  • This study investigated the enhanced combustion efficiency of an "air-cooled combustion system" with single F.D. fan, and performed a numerical analysis for the operation and design conditions to increase the combustion efficiency. The combustion efficiency in an actual combustor was compared before and after the structure modification. Numerical analysis for application of a single fan revealed the difficulty of forming a turbulence for circular combustion conditions. This is because the supply ratio of combustion air supplied into 2 flow paths becomes irregular in the combustion furnace due to a change in friction force and pressure in each flow path. Subsequently, two methods of supplying air into the combustion furnace were analyzed numerically to obtain the optimal combustion conditions of an air-cooled combustion system. The first method involved injecting the preheated combustion air after a 180~360 degree rotation from the outer wall, whereas in the second method, the combustion air was injected into the combustion furnace in a tangential direction after primary heat exchange outside the combustion furnace, by applying a rotatable vane structure in the combustion furnace. Results reveal that application of a single F.D. fan to the air injection into a rotatable combustion furnace is desirable for optimization of the combustion conditions for applying a duct structure having a dual cooling wall for the cooling of the outer wall of the combustion furnace, and for maintaining perfect mixing in the combustion furnace. We therefore confirmed enhanced combustion efficiency by comparing the actual combustion efficiency before and after structure modification.

A Comparison of the Cooling Effects for the Compressed Cold Air and Coolant on the Cylindrical Grinding with WA Wheel (WA 숫돌을 이용한 원통 연삭 시 압축냉각공기와 연삭유의 냉각효과에 관한 연구)

  • Lee, Seok-Woo;Choi, Hon-Zong;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.155-161
    • /
    • 2000
  • Recently, environmental pollution has become a big problem in industry and many researches have been done in order to preserve the environment. In the grinding process, the coolant has great influence on environment. It contains several chemicals(sulfur, phosphorus and chlorine) to improve the grinding efficiency. If these additives go into the workplace atmosphere, it is harmful for workers. It can also cause the environment pollution. Because of these reasons many studies have been done to minimize the amount of coolant. However the small amount of coolant can cause the thermal defect on the ground surface layer. This study forced the effects of the compressed cold air when the spindle shaft materials(SCM4 & SCM21) were cylindrical ground with WA wheel. The compressed cold air was used as the coolant and grinding performance was compared with that of the conventional grinding fluids(emulsion). Many experiments were carried out with these two cooling materials. The surface roughness, residual stress, and roundness were measured for the cylindrical grinding. The test results showed that the compressed cold air was very useful as the cooling materials for grinding process. It was also efficient to minimize the thermal defects of workpiece and could also play a role in solving environmental pollution.

  • PDF

Performance Comparison of Heat Transfer Plates for Cooling Tower Air Heater Through Numerical Analysis (냉각탑 공기가열기용 전열판의 수치해석적 성능 비교)

  • Lee, Eul-Jong;Kim, Jung-Sik;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5676-5683
    • /
    • 2012
  • In this study, numerical analysis was performed on three shapes of heat transfer plates (chevron, wave and dimple type), which are currently used as fillers of cooling towers. Results show that heat transfer rates per consumed power were larger for enhanced plates as compared with that of plain plate. Highest heat transfer coefficient was obtained for wave shape followed by chevron and dimple shape. For wave shape, cross corrugations induced significant mixing of fluids, which enhanced the heat transfer. Friction factor yielded a similar trend with the heat transfer coefficient. However, heat transfer rate and pressure drop per sheet was the largest for chevron shape, due to the largest heat transfer area per sheet.

Development of Night Cooling System for Greenhouse Using Cool Air and Water from an Abandoned Coal Mine (폐광의 냉기 및 냉수를 이용한 온실의 야냉 시스템 개발)

  • Kang, Whoa-Seug;Kang, Wie-Soo;Lee, Gwi-Hyun;Oh, Jae-Heun;Kim, Ii-Seop;Yoo, Keun-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.2
    • /
    • pp.223-231
    • /
    • 1996
  • This study was to develop the most effective cooling system which is needed to cool greenhouse during summer night for getting up early blooming of strawberry. Various cooling systems were designed and constructed to use cool air and water from an abandoned coal mine. Cooling systems built for this study included an evaporative cooling system with cooling pad, heat exchanger using small or large radiator, and cooling duct for drawing cool air from coal mine. The cooling pad, small or large radiator and cooling duct were individually tested. Also, combined cooling system was tested by operating cooling pad, small radiator, and cooling duct simultaneously. The results in this study showed that individual cooling systems such as cooling pad, small radiator, and cooling duct had about the same effect on cooling greenhouse. The combined cooling system had little better cooling effect than individual cooling system except the large radiator. The most effective cooling system for cooling of greenhouse was obtained by using a large radiator as the heat exchanger. By using a large radiator, temperature in greenhouse was dropped into about $15^{\circ}C$ when outside temperature was $23-24^{\circ}C$ during summer night.

  • PDF

A Study on Cooling Condition for Quality Improvement of Rotary Molding Machine (회전성형기의 품질 향상을 위한 냉각 조건에 관한 연구)

  • Kang, Jeong-Seok;Kim, In;Lee, Myungjae;Yoon, Jai-young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.367-371
    • /
    • 2019
  • The molding for hollow products used widely in industry is rotational molding by heating and cooling. Uniform cooling is required to improve the quality of the product, and rapid cooling is required to improve the productivity. In this paper, the cooling condition is largely classified into the case of no forced cooling by the fan and forced cooling by the fan. In addition, when forced cooling by the fan is not performed, the condition for stopping the molding machine horizontally and the condition for stopping the molding machine vertically were classified. To confirm the forced cooling by the fan, the conditions were set such that only the molding machine rotates while the fan is not running and the upper and lower fans operate when only the lower fan is operated. The surface temperature of the rotary molding machine was analyzed by the STAR-CCM+ program for the case of air-cooling. The temperature distribution of the rotary molding machine was analyzed for five conditions and the temperature distribution for cooling was compared under each condition. Among the five cases, Case 4 was lowest at approximately 35 ℃ after 900sec.

A Study on the Effects of Fin Length on Natural Convection Heat Transfer from a Inclined Flat Plate (경사평판에서의 핀길이가 자연대류 열전달에 미치는 영향에 관한 연구)

  • 천대희
    • Fire Science and Engineering
    • /
    • v.12 no.1
    • /
    • pp.3-8
    • /
    • 1998
  • This study has been conducted experimentally on the effects of natural convection heat transfer characteristics for inclined flat plate with vertical fin in air. The effects of various fin length, flat plate inclined angle and Grashof number are mainly investigated The experimented results are as follows: The mean heat transfer coefficient increase according to the decrease of H/S in the various fin lengh. The mean heat transfer coefficient at H/S-0.5, 1.0, 1.5 for Gr=2.11$\times$103. $\theta$=00 increase by 107%, 43%, 15% than H/S=2.0. The mean heat transfer coefficient decrease with the increase of $\theta$ the inclined angles. The mean heat transfer coefficient at Gr=2.97$\times$103 is constant, at $\theta$= 00 for H/S=0.5 decrease by 33% than $\theta$=90$^{\circ}$. The mean heat transfer coefficient increase as Grashof as Grashof number increase. The mean heat transfer coefficient at Gr=2.31$\times$103, Gr=2.61$\times$103, Gr=2.97$\times$103 for H/S=1.0, $\theta$=0$^{\circ}$increase by 9%, 16%, 28% than Gr=2.11$\times$103.

  • PDF

A Design Study of Phase Changing Heat Exchanger for Environmental Control System (환경조절장치용 상변화열교환기의 개념설계연구)

  • Yoo, Young-June;Oh, Chang-Mook;Lee, Hyung-Joo;Min, Seong-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.628-635
    • /
    • 2010
  • Properties of bleed air that is air source of ECS(Environmental Control System) can be rapidly changed with airplane engine operating conditions during flight. Therefore, ECS can be operated at a high performance or not during flight. So, high performance ACM has to be developed in order to flight safely. A adaptability of phase changing heat exchanger was esteemed at ACM type ECS in this study. As a result of this study, it is found that ECS outlet temperature can be controlled in a certain range with the phase changing phenomenon.

  • PDF