• Title/Summary/Keyword: 공기냉각

Search Result 425, Processing Time 0.028 seconds

Performance Prediction of Steam Injected Gas Turbine Cycle (증기분사 가스터빈 시스템의 성능예측)

  • Lee, Han-Goo;Kang, Seung-Jong;Lee, Chan
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.22-30
    • /
    • 1993
  • 증기분사 가스터빈 시스템의 성능예측 모델을 상용모사기인 ASPEN 코드를 이용하여 개발하였다. 압축기 및 터빈은 등엔트로피 과정으로, 연소기는 Thermal NOx 생성을 수반하는 연소모형으로서 가정하였다. 또한 터빈 냉각을 위한 추출공기량과 냉각공기가 터빈 성능에 미치는 영향은 적절한 상관 관계식을 도입하여 평가하였다. 본 예측 모델을 이용하여 예측된 결과와 실험결과간의 비교를 통하여 모델의 타당성을 제시하였고, 증기 분사량 및 터빈 냉각변수 변화에 따른 예측결과를 통하여 가스터빈 시스템 설계기준을 제시하였다.

  • PDF

Performance of Heat Recovery System using Evaporative Cooling (증발냉각을 이용한 배기열 회수장치의 성능에 관한 연구)

  • Yoo, Seong Yeon;Kim, Tae Ho;Kim, Myung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Evaporative cooling is a very effective way for exhaust heat recovery that uses both latent heat and sensible heat. This study investigated the performance of a heat recovery system using evaporative cooling. The experimental apparatus comprised a plastic heat exchanger, a water spray nozzle, an air blowing fan, a water circulation pump, and measuring sensors for the temperature, humidity, and flow rate. The effectiveness of the sensible heat recovery without evaporation was measured and compared with that of the total heat recovery with evaporation. The effectiveness of the sensible and total heat recoveries decreased as the air flow rate increased, and a much higher effectiveness was obtained with the counterflow arrangement in both cases. For total heat recovery, the effectiveness increased with the water flow rate, and the parallel flow arrangement was found to be more sensitive to the water flow rate than the counterflow arrangement.

Prediction of Cooling Performance for Indirect Evaporative Cooling System Using Danpla Sheet (단프라시트를 적용한 간접식 증발냉각 장치의 냉각 성능 예측)

  • Kim, Myung-Ho;Kim, Byoung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.892-897
    • /
    • 2020
  • Previous plastic heat exchangers are expensive because the mold must be newly manufactured depending on the air conditioning space. On the other hand, danpla is so thin that the heat exchange performance is excellent. Moreover, danpla can be used easily in ventilation systems in view of fabrication. This study proposes correlations for the cooling performance of an indirect evaporative cooling system. The experimental apparatus consisted of a heat exchanger, spray nozzle, fan, thermostat, pump, and measuring sensors for temperature, humidity, and airflow rate. The results showed that the effectiveness decreased gradually as the airflow rate increased. In addition, there was an optimal condition in terms of effectiveness. The performance prediction correlations were determined using the experimental data from various conditions. The proposed correlations showed performance accuracies within 4 % error.

Characteristics of Nocturnal Atmospheric Cooling on a Mountain Slope (산지 경사면의 야간 대기 냉각 특성)

  • 황규홍;이정택;허승오;심교문
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.68-71
    • /
    • 2001
  • 밝고 바람이 없는 저녁, 지표근처의 냉각은 많고 일출 전후에 최저기온이 나타난다(Nishiyama, 1985). 그리고 기온은 지표근처에서 가장 낮고 고도가 높아질수록 높아진다. 이러한 상태를 지표역전(surface inversion) 또는 지면역전(ground inversion)이라 한다. 지표 역전층은 지표근처에 강한 복사냉각(radiative cooling)에 의해 형성되고, 다른 하나는 차가운 공기의 drainage에 의해 이류(advection) 되어 지표근처에 축적된다.(중략)

  • PDF

A Study of the Cooling Effect of an Evaporation-Type Cool Roof Fan (기화방열식 Cool Roof Fan의 냉풍효과에 대한 연구)

  • Kim, Yeong Sik;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.191-200
    • /
    • 2016
  • The ventilation effect of a ventilation system, which is classified as the forced ventilation and natural ventilation, is predominantly dependent on the combination of air supply and discharge. Perhaps the simplest ventilation is merely supplying the air as it is. However, to improve the indoor working environment during the summer, an air supply that is cooled to some extent has been widely adopted. Recently, a cooling method utilizing the vaporization of water was introduced. In this study, the performance of an evaporation-type air supply unit that was produced by Japan K-company and was installed in a shoe-manufacturing plant in Busan was investigated. The purpose of the experiment was to measure how much the supplied air could be cooled. From this experimental study, we confirmed that the evaporation-type air supply system is efficient, capable of improving the working environment during the summer while minimizing the energy cost.

Effects of Inlet Water Temperature and Heat Load on Fan Power of Counter-Flow Wet Cooling Tower (입구 물온도와 열부하가 냉각탑의 팬동력에 미치는 영향 분석)

  • Nguyen, Minh Phu;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.267-273
    • /
    • 2013
  • In order to provide effective operating conditions for the fan in a wet cooling tower with film fill, a new program to search for the minimum fan power was developed using a model of the optimal total annual cost of the tower based on Merkel's model. In addition, a type of design map for a cooling tower was also developed. The inlet water temperature and heat load were considered as key parameters. The present program was first validated using several typical examples. The results showed that for a given heat load, a three-dimensional graph of the fan power (z-axis), mass flux of air (x-axis, minimum fan power), and inlet water temperature (y-axis, maximum of minimum fan power) showed a saddle configuration. The minimum fan power increased as the heat load increased. The conventionally known fact that the most effective cooling tower operation coincides with a high inlet water temperature and low air flow rate can be replaced by the statement that there exists an optimum mass flux of air corresponding to a minimum fan power for a given inlet water temperature, regardless of the heat load.

Performance Change of Gas Turbine with a Evaporation Cooling System in Summer Season (하절기 기화냉각장치 설치에 따른 가스터빈 성능변화)

  • Chung, Hyeon-Jo;Yoo, HoSeon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2017
  • This study analyzed the change of gas turbine performance with air temperature decrease by the evaporation cooling system in summer season. Gas turbine performance was tested on the condition that ambient temperature is $29{\pm}1^{\circ}C$. As a result, Air temperature at the compressor inlet was decreased by $4.12^{\circ}C$ after the installation of evaporation cooling system. Decreased air temperature followed by increased air density affected gas turbine performance, Which increased compressor pressure ratio by 0.27, improved compressor efficiency of 0.29 %p, improved gas turbine enthalpy drop efficiency of 0.31 %p, improved the gas turbine efficiency by 0.44 %p, improved electric power output by 4,489 kW. On the other side, the influence of the humidity increase and flow resistance increase was negligible.

  • PDF

Numerical Analysis of Heat Transfer of Aligned Wing Type Pin-Fin Array of Air Cooling Module with Various Fin Shapes for Electronic Packaging Application (날개형 핀-휜의 기하학적 형상이 전자기기 모듈 냉각용 공기냉각기의 유동 및 열전달에 미치는 영향)

  • Kim, Soo-Youn;Heo, Kyeon;Shin, Seok-Won
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.265-270
    • /
    • 2008
  • In this study, the flow and heat transfer of the aligned pin-fin array of the air cooling module for electronic packaging application were numerically analyzed with various fin shapes. The geometric cross-sectional shapes of pin-fins considered in this study were ellipse, wing and circle. The fins had same cross-sectional area and height, but they had different surface areas. As the results, the surface area, the heat transfer coefficient, and the heat transfer performance of pin-fins greatly depended on their shapes. Of the three types of pin-fins, the wing type pin-fin with suitable shape produced the best heat transfer performance. This result implies that the cooling capacity of the pin-fin cooler can be significantly enhanced only by the change of fin shape without increasing air flow-rate or fin density.

  • PDF

Study for Effective Cooling of Ni-MH Battery Module Using Forced Air Flow (공기 유동에 따른 Ni-MH 배터리 모듈의 효과적인 냉각에 관한 연구)

  • Ahn, Chi-Yeong;Kim, Tae-Sin;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.253-260
    • /
    • 2011
  • In this study, computational simulation was performed for thermal management of modules consisting of 10 batteries. Simplified structure and equivalent thermal resistance network was applied to maintain the thermal properties. Verification test of the mesh were in progress to ensure the reliability of 2.6 mm in the narrow gap between the battery, resulting in at least three divided mesh between the shape of the grid was required. Type of air from rear of the module, type of air from top of the module and type of air from bottom of the module were applied and effective cooling methods are discussed based on the location of fan and air intake of the modules. Maximum temperature and temperature differences of modules that directly affect the performance of the module were compared, and also behavior of the fluid was confirmed by comparing the air flow. The best maximum temperature is shown type of air from bottom of the module to $40.27^{\circ}C$ and type of air from top of the module shows smallest temperature difference $0.73^{\circ}C$.