• Title/Summary/Keyword: 공기공급

Search Result 741, Processing Time 0.031 seconds

The Study of Toluene Combustion over Palladium-copper/USY Zeolite Catalyst (Pd-Cu/USY 제올라이트상에서 톨루엔 연소반응 연구)

  • Lee, Hye Young;Jin, Taihuan;Hwang, Young Kyu;Chang, Jong-San;Hwang, Jin-Soo;Lee, Chang-Gook;Baek, Shin;Ra, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.404-409
    • /
    • 2006
  • The catalytic combustion of toluene over Pd-Cu/USY zeolite has been examined by using FT-IR spectroscopy in a closed system under dry and humid conditions. The catalytic combustion of toluene (700 ppmv) in the temperature range of $80-220^{\circ}C$ has been investigated by using a fixed bed reactor. The Pd-Cu/USY catalyst showed the highest catalytic performance with respects to the PdO-CuO/USY and Pd/USY. Comparing to $PdO/Al_2O_3$ catalysts, the slight improvement in conversion was observed over PdO/USY catalysts under humid condition since USY zeolite is hydrophobic substrate and water give an additional oxygen source to zeolite surface like oxygen. The reduced catalysts showed more enhanced catalytic activity due to the reduced activation energy of combustion of toluene than oxidized catalysts such as PdO/USY and PdO-CuO/USY.

Removal of Ammonia-N by using the Immobilized Nitrifier Consortium in Aquaculture System (양어장에서 고정화된 질화세균군을 이용한 암모니아 질소 제거)

  • SUH Kuen-Hack;KIM Yong-Ha;AHN Kab-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.868-873
    • /
    • 1997
  • Nitrifier consortium entrapped in Ca and Ba-alginate beads were packed into two reactors and studied for removing ammonia-nitrogen in aquaculture system. The ammonia-nitrogen concentration of the influent was continually kept about 2 ppm. At the hydraulic residence time of 0.6 hours, ammonia-nitrogen removal amount of two reactors was about 52.6 and 51.0 g $NH_3-N/m^3/day$, respectively. The ability of adjusting to an impulsive leading which was happened according to variations of HRT was better at Ba-alginate reactor, but its discrepancy was not so large. At the respect of removing ammonium-nitrogen, two reactors showed the similar ability of treating recirculating water.

  • PDF

Influence of the Type of Fine Aggregate on Concrete Properties (잔골재 종류가 콘크리트의 물성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Yoon, Gi-Won;Han, Cheon-Goo;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.459-467
    • /
    • 2006
  • Recently, interest grew on the quality of aggregates following the diminution of primary resources from river as to grow construction demand and the low grade of nature sand like sea sand. Following, need is to diversify the supply sources of fine aggregates which are excessively relying on sea sand and urgency is to find as soon as possible aggregate resources that can substitute sea sand. On the other hand, various fine aggregates are utilized to produce concrete in the domestic construction fields. However, few studies have been systematically investigated on the effects of such fine aggregates on concrete properties. Therefore, this study examined the effects of comparatively widely used fine aggregates in the domestic construction fields on the quality of concrete through the analysis of the effects of such fine aggregates on the physical properties of fresh concrete and strength of hardened concrete. Results revealed that crushed sand degraded the fluidity and air entraining of concrete compared to natural aggregates like sea sand and river sand. Especially, the use of crushed sand exhibiting bad grain shape and grade was larger adverse effect on the physical properties of concrete. The type of fine aggregates appeared to have negligible influence on the strength for W/C of 55%, 45% while crushed sand decreased the strength for W/C of 35% compared to natural aggregates. It analyzed that the combination of crushed sand exhibiting bad grain shape and grade with natural aggregates improved the characteristics of fresh concrete and had negligible influence on the strength.

Optimum Operating Condition for Micro-Filtration Process as a Seawater Desalination Pretreatment (해수담수화 전처리로서 가압식 MF 공정의 최적 운전조건 도출)

  • Kim, Youngmin;Jang, Jung-Woo;Kim, Jin-Ho;Choi, June-Seok;Lee, Sangho;Kim, Sukwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.624-629
    • /
    • 2013
  • The relation between performance maintenance conditions and those cost efficiency was studied to choose an optimum operating condition in the seawater desalination pretreatment system. A hollow fiber microfiltration module, which was developed with domestic technology, was tested with the various operating conditions such as chemically enhanced backwash cycles and design dosages of a cleaning chemical. Transmembrane pressure was measured to investigate membrane fouling status and cleaning degree. In addition, economic analysis was performed to compare water production costs by the operation condition. As a result, The operation mode III, chemically enhanced backwash at once a day with 100 mg/L of sodium hypochlorite (NaOCl) was selected. The concurrent evaluation between membrane filtration performance and its economic analysis will be suitable to choose an efficient optimum condition.

Cabrol Technique Application in Off-pump Coronary Artery Bypass Grafting Using Radial Artery (인공심폐기를 이용하지 않는 관상동맥우회술 시 요골동맥을 이용한 Cabrol 술식의 응용)

  • Na, Chan-Young;Oh, Sam-Se;Kim, Soo-Cheol;Kim, Jae-Hyun;Jo, Won-Min;Seo, Hong-Ju;Lee, Cheul;Chang, Yun-Hee;Kang, Chang-Hyun;Lim, Cheong;Baek, Man-Jong;Whang, Song-Wok;Choi, In-Seok;Kim, Woong-Han;Park, Yoon-Ock;Moon, Hyun-Soo;Park, Young-Kwang;Kim, Chong-Whan
    • Journal of Chest Surgery
    • /
    • v.36 no.8
    • /
    • pp.630-632
    • /
    • 2003
  • In off-pump coronary artery bypass grafting (CABG), multiple proximal anastomosis may increase the risk of cerebral embolism (air, debris) and aortic injury (dissection, pseudoaneurysm). Radial artery (RA) has no intraluminal valve such as saphenous vein. We applied Cabrol technique using aortic root replacement for proximal anastomosis in off-pump CABG. Cabrol technique using RA graft can reduce numbers of proximal anastomosis and reduce number of aortic manipulation in off-pump CABG. We report a Cabrol technique for proximal anastomosis in off-pump CABG with RA graft.

Gas Permeation Properties of Polymeric Membranes for Biosensor Prepared from Poly(vinyl chloride) Derivatives (Poly(vinyl chloride) 유도체로부터 제조된 바이오센서용 고분자막의 기체 투과특성)

  • Lim, Chun-Won;Kim, Wan-Young;Lee, Youn-Sik;Yoon, Jeong-Won;Jeong, Yong-Seob
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.362-366
    • /
    • 1999
  • Membranes for biosensor were prepared from poly(vinyl chloride) (PVC)l derivatives using the solution casting method, and their gas permeabilities were studied. The polymer membranes dried slowly in air showed higher permeability coefficients than those dried in vacuum. The permeabilily coefficients of carboxylated poly(vinyl chloride) (CPVC) membranes for $O_2$ and $CO_2$ decreased as the pressure of the feed gas increased. The addition of dioctylphthalate (DOP) enhanced the permeation rates for $O_2$ and $CO_2$. For example, the permeability coefficients of CPVC membranes containing 30 wt. % DOP for $O_2$ and $CO_2$ at 100 psig were 2.03 and 0.96 Barrer, respectively, which were about 4~5 times higher than those of the membranes without DOP. Poly(vinyl chloride-co-vinyl acetate-co-vinyl alcohol) (Syn-PVCAcAl) obtained by hydrolysis of poly(vinyl chloride-co-vinyl acetate (PVCA) showed a higher permeability coefficient for $CO_2$ in the presence of DOP than that for commercial PVCAcAl, but did not show any significant difference in permeability for $O_2$.

  • PDF

생의학 의용을 위한 마이크로 웨이브 대기압 플라즈마 장비

  • Gang, Seong-Gil;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.259-260
    • /
    • 2011
  • 대기압 플라즈마는 멸균과 살균, 지혈, 피부재생, 치아 미백 등 여러 의학 분야를 대상으로 그 효과를 나타내고 있으며, 플라즈마 장비를 만들어 내기 위해 부피가 큰 진공 장비가 필요하지 않다는 점에서 대기압 플라즈마는 그 활용과 효과에 있어 큰 기대를 받고 있다. 대기압에서 플라즈마는 다양한 주파수를 이용하여 만들어져 왔으며, 본 연구실에서 연구하고 있는 수백 MHz-수 GHz 대역의 파워를 사용하는 플라즈마의 경우 대기압 플라즈마를 의학 분야에 사용할 때 만족해야 할 조건들에 만족하는 특성을 보여준다. 기존의 고주파를 사용하는 장비의 경우 추가적인 Matching 장비로 인해 플라즈마를 만들기 위해 큰 장비와 높은 파워가 필요한 단점이 있었다. 하지만 이 마이크로웨이브 장비는 전송선 이론을 기반으로 장비 자체가 구조적인 Matching이 이루어 지도록 설계되었다(그림 1). 즉, 추가적인 Matching 장비의 필요 없이 외부에서 파워를 주는 것만으로 플라즈마를 발생 시킬 수 있으며, 50% 이상의 파워 효율을 보여준다. 또한 그 크기도 손에 쥐고 사용할 수 있을 볼펜 정도의 크기이며, 3W의 정도의 저 전력으로 플라즈마를 발생 시켰다. 높은 에너지를 가지는 전자들은 공급되는 기체뿐만 아니라, 주변 공기와의 반응하여 여러 응용분야에 적합한 활성 종을 다량 만들어내게 된다. 본 연구실의 강점인 플라즈마 시뮬레이션으로 얻은 결과에서 주파수가 올라 갈수록 높은 에너지를 가지는 전자들이 많아지는 것을 보여준다. 그리고 발생시킨 플라즈마의 광학 특성에서도 생의학 분야에 적합한 많은 활성 종들이 발생 되는 것을 확인하였다. 일반적으로 의학 분야에 사용되는 플라즈마의 경우 플라즈마에서 발생하는 열에 의한 피해를 최소화 하는 것이 중요하다. 마이크로웨이브 플라즈마의 경우, 그 플라즈마의 온도가 50$50^{\circ}$C 미만으로 의학 분야에 사용하기 적합하다. 또한 구동 주파수가 올라갈수록 플라즈마를 유지하는데 필요한 전압이 상대적으로 낮아지게 되는데, 이는 전기적 쇼크 등 플라즈마 의용에서 발생하는 안전성 문제에 있어서도 마이크로 웨이브 장비가 좋은 점이다. 본 플라즈마 장비를 구동하기 위한 손바닥 크기 정도의 소형의 전용 파워 장치를 개발함으로써 저전력 소형 플라즈마 장치를 개발하는 것을 목표로 하고 있다. 마이크로 웨이브 장비는 여러 가지 분야에서 그 효과를 검증 받았다. 혈액 응고 실험에서 30초 정도의 짧은 처리만으로도 자연 응고에 비해 탁월한 지혈 효과를 보여줬다 (그림 2). 충치를 발생시키는 대표적인 구강균인 S.mutans의 살균 실험에서 Ti02와의 복합적인 처리를 통해 30초 미만의 처리로 처리하지 않은 것에 비해 10-6 만큼의 줄어드는 살균 효과를 보여줬다. 뿐만 아니라 치아의 미백에 있어서도 탁월한 효과를 나타냈다. 현재 본연구실에서는 마이크로 웨이브 장비의 기본적인 구조를 응용하여, 좀더 넓은 영역을 처리할 수 있는 대면적 마이크로 웨이브 장비를 위한 연구를 수행 중이다.

  • PDF

Study on Laboratory Diagnosis of the Ebola Virus and Its Current Trends (에볼라 바이러스 진단법과 개발 동향에 관한 고찰 연구)

  • Jeong, Hye Seon;Kang, Yun-Jung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.3
    • /
    • pp.105-111
    • /
    • 2015
  • In late December 2013, the Ebola virus emerged from West Africa. The outbreak started in Guinea and rapidly spread to Liberia and Sierra Leone. Initially, the virus is spread to the human population after contact with infected wildlife and then spread person-to-person through direct contact with body fluids such as blood, sweat, urine, semen, and breast milk. The Ebola virus infects endothelial cells, mononuclear phagocytes and hepatocytes. It causes massive damage to internal tissues and organs, such as blood vessels and the liver, and ultimately death. Most tests for the virus RNA rely on a technology called reverse-transcriptase polymerase chain reaction (RT-PCR). While this method is highly sensitive, it is also expensive, requiring skilled scientists, and delicate power supplies. The strip analytical technique (enzyme-linked immunosorbent assay or ELISA) detects antigens or antibodies to the Ebola virus. This test is cheap and does not require electricity or refrigeration. Despite ongoing efforts directed at experimental treatments and vaccine development, current medical work on the Ebola viral disease is largely limited to supportive therapy. Thus, rapid and reliable diagnoses of the Ebola virus are critically important for patient management, infections, prevention, and control measures.

A Study on the Waste Treatment from a Nuclear Fuel Powder Conversion Plant (핵연료 분말제조 공정에서 발생하는 폐액의 처리에 관한 연구)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyun;Park, Jin-Ho;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1164-1173
    • /
    • 1996
  • Treating methods and characteristics of waste from a nuclear fuel powder conversion plant were studied. To recovery or treat a trace uranium in liquid waste, the ammonium uranyl carbonate(AUC) filtrate must be heated for $CO_2$ expelling, essentially. Uranium content of final treated waste solution from fuel powder processes for a heavy water reactor(HWR) could be lowered to 1 ppm by the lime treatment after the ammonium di-uranate(ADU) precipitation by simple heating. Otherwise, in case of the waste from fuel powder processes for a pressurized light water reactor(PWR), it is result in 0.8 ppm as a form of uranium peroxide such as $UO_4{\cdot}2NH_4F$ compounds. Optimum condition was found at $101^{\circ}C$ by the simple heating method in case of HWR powder process waste. And in case of PWR powder process waste, optimum condition could be obtained by precipitating with adding hydrogen peroxide and adjusting at pH 9.5 with ammonia gas at $60^{\circ}C$ after heating the waste In order to expelling $CO_2$. As the characteristics of recovered uranium compounds, median particle size of ADU was increased with pH increasing in case of HWP waste. Also, in case of uranium proxide compound recovered from PWR waste, the property of $U_3O_8$ power obtained after thermal treatment in air atmosphere was similar to that of the powder prepared from AUC conversion plant.

  • PDF

Numerical Simulation of Three Dimensional Fluid Flow Phenomena in Cylindrical Submerged Flat Membrane Bioreactor for Aeration Rate (원통 침지형 평막 생물반응기 내 산기량에 따른 3차원 유동현상에 관한 수치모사)

  • Kim, Dae Chun;Chung, Kun Yong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.401-408
    • /
    • 2014
  • In membrane bio-reactor (MBR), the aeration control is one of the important independent variables to decrease fouling and to save energy with shear stress change on the membrane surface. The paper was carried out for numerical simulation of 3-dimensional fluid flow phenomena of the cylindrical bioreactor with submerged flat membranes equipped in the center and supplied the air from the bottom by using the COMSOL program. The viscosity and temperature of solution were assumed to be constant, and the specific air demand based on permeate volume ($SAD_p$) defined as scouring air per permeate rates was used as a variable. The calculated CFD velocities were compared with those of the velocity meter measurement and video image analysis, respectively. The results were good agreement each other within 11% error. For fluid flow in the reactor the liquid velocity increased rapidly between the air diffuser and membrane module, but the velocity decreased during flowing of the membrane module. Also, the velocity increased as it was near from the reactor wall to the central axis. The calculated shear stress on the membrane surface showed the highest value at the center part of the module bottom side and increased as aeration rate increased. Especially, the wall shear stress increased dramatically as the aeration rate increased from 0.15 to 0.25 L/min.